This paper investigates how the process of going bankrupt can be recognized much earlier by enterprises than by traditional forecasting models. The presented studies focus on the assessment of credit risk classes and on determination of the differences in risk class migrations between non-bankrupt enterprises and future insolvent firms. For this purpose, the author has developed a model of a Kohonen artificial neural network to determine six different classes of risk. Long-term analysis horizon of 15 years before the enterprises went bankrupt was conducted. This long forecasting horizon allows one to identify, visualize and compare the intensity and pattern of changes in risk classes during the 15-year trajectory of development between two separate groups of companies (150 bankrupt and 150 non-bankrupt firms). The effectiveness of the forecast of the developed model was compared to three popular statistical models that predict the financial failure of companies. These studies represent one of the first attempts in the literature to identify the long-term behavioral pattern differences between future “good” and “bad” enterprises from the perspective of risk class migrations.


  • 1


  • 0

    Web of Science

  • 0


Cytuj jako

Pełna treść

pobierz publikację
pobrano 7 razy
Wersja publikacji
Accepted albo Published Version
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Publikacja w czasopiśmie
artykuły w czasopismach
Opublikowano w:
Journal of Business Economics and Management nr 21, strony 783 - 804,
ISSN: 1611-1699
Rok wydania:
Opis bibliograficzny:
Korol T.: LONG-TERM RISK CLASS MIGRATIONS OF NON-BANKRUPT AND BANKRUPT ENTERPRISES// Journal of Business Economics and Management -Vol. 21,iss. 3 (2020), s.783-804
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3846/jbem.2020.12224
Bibliografia: test
  1. Acosta-González, E., & Fernández-Rodríguez, F. (2014). Forecasting financial failure of firms via genet- ic algorithms. Computational Economics, 43, 133-157. https://doi.org/10.1007/s10614-013-9392-9 otwiera się w nowej karcie
  2. Agarwal, V., & Taffler, R. (2007). Twenty-five years of the Taffler z-score model -does it really have predictive ability? Accounting and Business Research, 37(4). otwiera się w nowej karcie
  3. https://doi.org/10.1080/00014788.2007.9663313 otwiera się w nowej karcie
  4. Alaka, H. A., Oyedele, L. O., Owolabi, H. A., Kumar, V., Ajayi, S. O., Akinade, O. O., & Bilal, M. (2018). Systematic review of bankruptcy prediction models: Towards a framework for tool selection. Expert Systems with Applications, 94, 164-184. https://doi.org/10.1016/j.eswa.2017.10.040 otwiera się w nowej karcie
  5. Altman, E. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance, 23, 589-609. https://doi.org/10.1111/j.1540-6261.1968.tb00843.x otwiera się w nowej karcie
  6. Altman, E. (2018). Applications of distress prediction models: What have we learned after 50 years from the Z-score models? International Journal of Financial Studies, 6(3), 70. https://doi.org/10.3390/ijfs6030070 otwiera się w nowej karcie
  7. Altman, E., & Sabato, G. (2007). Modelling credit risk for SMEs -evidence from the US market. ABA- CUS, 43(3), 332-356. https://doi.org/10.1111/j.1467-6281.2007.00234.x otwiera się w nowej karcie
  8. Argenti, J. (1976). Corporate collapse -the causes and symptoms. McGraw-Hill.
  9. Barboza, F., Kimura, H., & Altman, E. (2017). Machine learning models and bankruptcy prediction. Expert Systems with Applications, 83, 405-417. https://doi.org/10.1016/j.eswa.2017.04.006 otwiera się w nowej karcie
  10. Bluhm, Ch., Overbeck, L., & Wagner, Ch. (2003). An introduction to credit risk modeling. Chapman & Hall/CRC. https://doi.org/10.1201/9781420057362 otwiera się w nowej karcie
  11. Brabazon, A., & O'Neil, M. (2004). Diagnosing corporate stability using grammatical evolution. Journal of Applied Mathematics and Computer Science, 1, 293-310.
  12. Burgelman, R. (1991). Intraorganizational mortality-liabilities of newness and adolescence. Organiza- tion Science, 2(3), 239-262. https://doi.org/10.1287/orsc.2.3.239 otwiera się w nowej karcie
  13. Chen, N., Ribeiro, B., Vieira, A., & Chen, A. (2013). Clustering and visualization of bankruptcy trajec- tory using self-organizing map. Expert Systems with Applications, 40(1), 385-393. https://doi.org/10.1016/j.eswa.2012.07.047 otwiera się w nowej karcie
  14. Delen, D., Kuzey, C., & Uyar, A. (2013). Measuring firm performance using financial ratios: A decision tree approach. Expert Systems with Applications, (40), 3970-3983. https://doi.org/10.1016/j.eswa.2013.01.012 otwiera się w nowej karcie
  15. Dong, M. C., Tian, S., & Chen, C. W. S. (2018). Predicting failure risk using financial ratios: Quantile hazard model approach. North American Journal of Economics and Finance, 44, 204-220. https://doi.org/10.1016/j.najef.2018.01.005 otwiera się w nowej karcie
  16. Fichman, M., & Levintahl, D. (1991). Honeymoon and liability of adolescence-a new perspective on duration dependence in social and organizational relationship. Academy of Management Review, 16(2), 442-468. https://doi.org/10.5465/amr.1991.4278962 otwiera się w nowej karcie
  17. Flores-Jimeno, R., & Jimeno-Garcia, I. (2017). Dynamic analysis of different business failure proccess. Problems and Perspective Management, 15(2), 486-499. https://doi.org/10.21511/ppm.15(si).2017.02 otwiera się w nowej karcie
  18. Gavurova, B., Packova, M., Misankova, M., & Smrcka, L. (2017). Predictive potential and risks of selected bankruptcy prediction models in the Slovak business environment. Journal of Business Economics and Management, 18(6), 1156-1173. https://doi.org/10.3846/16111699.2017.1400461 otwiera się w nowej karcie
  19. Giannopoulos, G., & Sigbjornsen, S. (2019). Prediction of bankruptcy using financial ratios in the Greek market. Theoretical Economics Letters, 9, 1114-1128. https://doi.org/10.4236/tel.2019.94072 otwiera się w nowej karcie
  20. Gilbert, C. (2005). Unbounding the structure of inertia -resource vs routine rigidity. Academy of Man- agement Journal, 48(5), 741-763. https://doi.org/10.5465/amj.2005.18803920 otwiera się w nowej karcie
  21. Grice, J., & Dugan, M. (2001). The limitations of bankruptcy prediction models -some cautions for the researcher. Review of Quantitative Finance and Accounting, 17, 151-166. https://doi.org/10.1023/A:1017973604789 otwiera się w nowej karcie
  22. Hambrick, D., & D' Aveni, R. (1988). Large corporate failures as downward spirals. Administrative Sci- ence Quarterly, 33(1), 1-23. https://doi.org/10.2307/2392853 otwiera się w nowej karcie
  23. Hosaka, T. (2019). Bankruptcy prediction using imaged financial ratios and convolutional neural net- works. Expert Systems with Applications, 117(1), 287-299. https://doi.org/10.1016/j.eswa.2018.09.039 otwiera się w nowej karcie
  24. Iturriaga, F. J., & Sanz, I. P. (2015). Bankruptcy visualization and prediction using neural networks -a study of U.S. commercial banks. Expert Systems with Applications, 42(6), 2857-2869. https://doi.org/10.1016/j.eswa.2014.11.025 otwiera się w nowej karcie
  25. Jayasekera, R. (2018). Prediction of company failure: Past, present and promising directions for the future. International Review of Financial Analysis, 55, 196-208. https://doi.org/10.1016/j.irfa.2017.08.009 otwiera się w nowej karcie
  26. Jardin, P. (2015). Bankruptcy prediction using terminal failure processes. European Journal of Opera- tional Research, 242(1), 286-303. https://doi.org/10.1016/j.ejor.2014.09.059 otwiera się w nowej karcie
  27. Jardin, P., & Severin, E. (2011). Predicting corporate bankruptcy using a self-organizing map -an empirical study to improve the forecasting horizon of a financial failure model. Decision Support Systems, 51(3), 701-711. https://doi.org/10.1016/j.dss.2011.04.001 otwiera się w nowej karcie
  28. Johnson, G. (1988). Rethinking incrementalism. Strategic Management Journal, 9(1), 73-91. https://doi.org/10.1002/smj.4250090107 otwiera się w nowej karcie
  29. Kale, S., & Arditi, D. (1998). Business failures-liabilities of newness, adolescence and smallness. Journal of Construction Engineering and Management, 124(6), 458-464. https://doi.org/10.1061/(ASCE)0733-9364(1998)124:6(458) otwiera się w nowej karcie
  30. Kiang, M., & Kumar, A. (2001). An evaluation of self-organizing map networks as a robust alternative to factor analysis in data mining applications. Information System Research, 12(2), 177-194. https://doi.org/10.1287/isre. otwiera się w nowej karcie
  31. Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological Cybernet- ics, 43(1), 141-152. https://doi.org/10.1007/BF00337288 otwiera się w nowej karcie
  32. Kumar, P. R., & Ravi, V. (2007). Bankruptcy prediction in banks and firms via statistical and intelligent techniques -a review. European Journal of Operational Research, 180, 1-28. https://doi.org/10.1016/j.ejor.2006.08.043 otwiera się w nowej karcie
  33. Laitinen, E. (2007). Classification accuracy and correlation -LDA in failure prediction. European Jour- nal of Operational Research, 183, 210-225. https://doi.org/10.1016/j.ejor.2006.09.054 otwiera się w nowej karcie
  34. Laitinen, E., & Lukason, O. (2014). Do firm failure processes differ across countries: evidence from Finland and Estonia. Journal of Business Economics and Management, 15(5), 810-832. https://doi.org/10.3846/16111699.2013.791635 otwiera się w nowej karcie
  35. Laitinen, E., Lukason, O., & Suvas, A. (2014). Behaviour of financial ratios in firm failure process: An international comparison. International Journal of Finance and Accounting, 3(2), 122-131.
  36. Lensberg, T., Eilifsen, A., & McKee, T. E. (2006). Bankruptcy theory development and classification via genetic programming. European Journal of Operational Research, 169, 677-697. https://doi.org/10.1016/j.ejor.2004.06.013 otwiera się w nowej karcie
  37. Li, L., & Faff, R. (2019). Predicting corporate bankruptcy: What matters? International Review of Eco- nomics & Finance, 62, 1-19. https://doi.org/10.1016/j.iref.2019.02.016 otwiera się w nowej karcie
  38. Liang, D., Lu, Ch., Tsai, Ch., & Shih, G. (2016). Financial ratios and corporate governance indicators in bankruptcy prediction: A comprehensive study. European Journal of Operational Research, 252(2), 561-572. https://doi.org/10.1016/j.ejor.2016.01.012 otwiera się w nowej karcie
  39. Lin, F., Liang, D., Yeh, C. C., & Huang, J. C. (2014). Novel feature selection methods to financial distress prediction. Expert Systems with Applications, 41, 2472-2483. https://doi.org/10.1016/j.eswa.2013.09.047 otwiera się w nowej karcie
  40. Lukason, O., & Hoffman, R. (2014). Firm bankruptcy probability and causes -an integrated study. International Journal of Business and Management, 9(11), 80. https://doi.org/10.5539/ijbm.v9n11p80 otwiera się w nowej karcie
  41. Mihalovic, M. (2016). Performance comparison of multiple discriminant analysis and logit models in bankruptcy prediction. Economics and Sociology, 9(4), 101-118. https://doi.org/10.14254/2071-789X.2016/9-4/6 otwiera się w nowej karcie
  42. Moulton, W. & Thomas, H. (1996). Business failure pathways -environmental stress and organizational response. Journal of Management, 2(4), 571-595. https://doi.org/10.1016/S0149-2063(96)90025-2 otwiera się w nowej karcie
  43. Ooghe, H., & Balcaen, S. (2006). 35 years of studies on business failure -an overview of the classic statistical methodologies and their related problems. The British Accounting Review, 38, 63-93. https://doi.org/10.1016/j.bar.2005.09.001 otwiera się w nowej karcie
  44. Ooghe, H., & Prijcker, S. (2008). Failure processes and causes of company bankruptcy -a typology. Management Decision, 46(2), 223-242. https://doi.org/10.1108/00251740810854131 otwiera się w nowej karcie
  45. Orsenigo, C., & Vercellis, C. (2013). Linear versus nonlinear dimensionality reduction for banks credit rating prediction. Knowledge-Based Systems, 47, 14-22. https://doi.org/10.1016/j.knosys.2013.03.001 otwiera się w nowej karcie
  46. Psillaki, M., Tsolas, I. E., & Margaritis, D. (2010). Evaluation of credit risk based on firm performance. European Journal of Operational Research, 201, 873-881. https://doi.org/10.1016/j.ejor.2009.03.032 otwiera się w nowej karcie
  47. Ptak-Chmielewska, A. (2019). Predicting micro-enterprise failures using data mining techniques. Jour- nal of Risk and Financial Managament, 12, 1-17. https://doi.org/10.3390/jrfm12010030 otwiera się w nowej karcie
  48. Richardson, B., Nwankwo, S., & Richardson, S. (1994). Understanding the causes of business failure crises. Management Decision Journal, 32(4), 9-22. https://doi.org/10.1108/00251749410058635 otwiera się w nowej karcie
  49. Sayari, N., & Mugan, C.D. (2017). Industry specific financial distress modeling. Business Research Quar- terly, 20, 45-62. https://doi.org/10.1016/j.brq.2016.03.003 otwiera się w nowej karcie
  50. Shimko, D. (2004). Credit risk -models and management. Barra Risk Books.
  51. Schonfeld, J., Kudej, M., & Smrcka, L. (2018). Financial health of enterprises introducing safeguard pro- cedure based on bankruptcy models. Journal of Business Economics and Management, 19, 692-705. https://doi.org/10.3846/jbem.2018.7063 otwiera się w nowej karcie
  52. Sun, J., Li, H., Huang, Q., & He, K. (2014). Predicting financial distress and corporate failure -a review from the state-of-the-art definitions, modeling, sampling, and featuring approaches. Knowledge- Based Systems, 57, 41-56. https://doi.org/10.1016/j.knosys.2013.12.006 otwiera się w nowej karcie
  53. Tian, S., Yu, Y., & Guo, H. (2015). Variable selection and corporate bankruptcy forecasts. Journal of Banking & Finance, 52, 89-100. https://doi.org/10.1016/j.jbankfin.2014.12.003 otwiera się w nowej karcie
  54. Tian, S., & Yu, Y. (2017). Financial ratios and bankruptcy predictions: An international evidence. Inter- national Review of Economics and Finance, 51, 510-526. https://doi.org/10.1016/j.iref.2017.07.025 otwiera się w nowej karcie
  55. Tsai, Ch. (2014). Combining cluster analysis with classifier ensembles to predict financial distress. Information Fusion, 16, 46-58. https://doi.org/10.1016/j.inffus.2011.12.001 otwiera się w nowej karcie
  56. Utterback, J., & Suarez, F. (1993). Patterns of industrial evolution, dominant desing, and firms' survival. In R. Burgelman, Research on technological innovation, management policy (Vol. 5, pp. 47-87). Greenwich Press. otwiera się w nowej karcie
  57. Wilner, B. (2000). The exploitation of relationships in financial distress -The case of trade credit. The Journal of Finance, 55(1). https://doi.org/10.1111/0022-1082.00203 otwiera się w nowej karcie
  58. Wiseman, R., & Bromiley, P. (1996). Toward a model of risk in declining organizations. Organization Science, 7(5), 524-543. https://doi.org/10.1287/orsc.7.5.524 otwiera się w nowej karcie
  59. Wu, Y., Gaunt, C., & Gray, S. (2010). A comparison of alternative bankruptcy prediction models. Jour- nal of Contemporary Accounting & Economics, 6, 34-45. https://doi.org/10.1016/j.jcae.2010.04.002 otwiera się w nowej karcie
  60. Xiao, Z., Yang, X., Pang, Y., & Dang, X. (2012). The prediction for listed companies' financial dis- tress by using multiple prediction methods with rough set and Dempster-Shafer evidence theory. Knowledge-Based Systems, 26, 196-206. https://doi.org/10.1016/j.knosys.2011.08.001 otwiera się w nowej karcie
  61. Zammuto, R., & Cameron, K. (1985). Environmental decline and organizational response. Research in Organizational Behavior, 7, 223-262. otwiera się w nowej karcie
  62. Zapranis, A., & Ginoglou, D. (2000). Forecasting corporate failure with neural network approach: The Greek case. Journal of Financial Management & Analysis, 13(2), 11-21.
Źródła finansowania:
Politechnika Gdańska

wyświetlono 18 razy

Publikacje, które mogą cię zainteresować

Meta Tagi