New thiourea organocatalysts and their application for the synthesis of 5-(1H-indol-3-yl)methyl-2,2-dimethyl-1,3-dioxane-4,6-diones a source of chiral 3-indoylmethyl ketenes - Publikacja - MOST Wiedzy

Wyszukiwarka

New thiourea organocatalysts and their application for the synthesis of 5-(1H-indol-3-yl)methyl-2,2-dimethyl-1,3-dioxane-4,6-diones a source of chiral 3-indoylmethyl ketenes

Abstrakt

The stereoselective properties of modified thiourea organocatalysts were tested in the Friedel–Crafts alkylation of indole with 5-arylidene-2,2-dimethyl-1,3-dioxane-4,6-diones, which produces chiral 5-((1H-indol-3-yl)(aryl)methyl)-2,2-dimethyl-1,3-dioxane-4,6-diones. Based on a tentative reaction mechanism for ((S)-N-benzyl-2-(3-(3,5-bis (trifluoromethyl)phenyl)thioureido)-N,3,3-trimethylbutanamide organocatalysts, modifications were applied in four selected regions. Systematic structure-stereoselectivity relationship study allowed designing the best efficient organocatalyst for the investigated Friedel–Crafts alkylation of indole with 5-arylidene-2,2-dimethyl-1, 3-dioxane-4,6-diones

Cytowania

  • 6

    CrossRef

  • 0

    Web of Science

  • 7

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 123 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
SYNTHETIC COMMUNICATIONS nr 48, strony 14 - 25,
ISSN: 0039-7911
Język:
angielski
Rok wydania:
2018
Opis bibliograficzny:
Makowiec S., Najda-Mocarska E., Zakaszewska A., Janikowska K.: New thiourea organocatalysts and their application for the synthesis of 5-(1H-indol-3-yl)methyl-2,2-dimethyl-1,3-dioxane-4,6-diones a source of chiral 3-indoylmethyl ketenes// SYNTHETIC COMMUNICATIONS. -Vol. 48, nr. 1 (2018), s.14-25
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1080/00397911.2017.1383432
Bibliografia: test
  1. Affonso, V.; Bizzo, H.; Lage, C.; Sato, A.; Influence of Growth Regulators in otwiera się w nowej karcie
  2. Biomass Production and Volatile Profile of in Vitro Plantlets of Thymus vulgaris L. J otwiera się w nowej karcie
  3. Agric. Food Chem. 2009, 57, 6392-6395. (b) Abel, S. Auxin Is Surfacing. ACS Chem.
  4. Biol. 2007, 2, 380-384. otwiera się w nowej karcie
  5. (a) Kochanowska-Karamyan, A. J.; Hamann, M. T. Marine Indole Alkaloids: otwiera się w nowej karcie
  6. Potential New Drug Leads for the Control of Depression and Anxiety. Chem. Rev. 2010, 110, 4489-4497. (b) Baganz, N. L.; Blakely, R. D. A Dialogue between the Immune System and Brain, Spoken in the Language of Serotonin. ACS Chem. Neurosci. 2013, 4, 48-63. (c) Angoa-Pérez, M.; Kane, M. J.; Briggs, D. I.; Herrera-Mundo, N.; Sykes, C. E.; Francescutti, D. M.; Kuhn, D. M. Mice Genetically Depleted of Brain Serotonin Do Not Display a Depression-like Behavioral Phenotype. ACS Chem. Neurosci. 2014, 5, 908- 919.
  7. Humber, L. G.; Ferdinandi, E.; Demerson, C. A.; Ahmed, S.; Shah. U.; Mobilio, D.; Sabatucci. J.; De Lange, B.; Labbadia, F. Etodolac, a novel 14 otwiera się w nowej karcie
  8. antiinflammatory agent. The syntheses and biological evaluation of its metabolites. J. otwiera się w nowej karcie
  9. Med. Chem. 1988, 31, 1712-1719. (b) Dejaco, Ch.; Duftner, Ch.; Schirmer, M. Lack of influence of body mass index on efficacy and tolerance of acemetacin in short-term treatment of musculoskeletal diseases. Rheumatol. Int. 2007, 27, 351-355. (c) Hughes, P.; DeVirgilio, J.; Humber, L. G.; Weichman, B.; Neuman, G. Synthesis and biological evaluation of 4,6-diethyl-1,3,4,5-tetrahydropyrano[4,3-b]indole-4-acetic acid, an isomer of etodolac. J. Med. Chem. 1989, 32, 2134-2137. (d) Lione, A.; Scialli, A. R. The developmental toxicity of indomethacin and sulindac. Reprod. Toxicol. 1995, 9, 7-20. (e) otwiera się w nowej karcie
  10. Bellamy, N. Etodolac in the management of pain: A clinical review of a multipurpose analgesic. Inflammopharmacology 1997, 5, 139-152. otwiera się w nowej karcie
  11. Michnovicz, J. J. Altered estrogen metabolism and excretion in humans following consumption of indole-3-carbinol. Nutr. Cancer 1991, 16, 59-66. (b) otwiera się w nowej karcie
  12. Michnovicz, J. J. Changes in levels of urinary estrogen metabolites after oral indole-3- carbinol treatment in humans. Natl. Cancer Inst. 1997, 89, 718-724. (c) Holt, D. A.; Yamashita, D. S.; Konialian-Beck, A. L.; Luengo, J. I.; Abel, A. D.; Bergsma, D. J.; Brandt, S. M.; Levy, M. A. Benzophenone-and Indolecarboxylic Acids: Potent Type-2
  13. Specific Inhibitors of Human Steroid 5a-Reductase. J. Med. Chem. 1995, 38, 13-15. otwiera się w nowej karcie
  14. Mattson, R. J.; Catt, J. D.; Denhart, D. J.; Deskus, J. A.; Ditta, J. L.; Higgins, otwiera się w nowej karcie
  15. M. A.; Marcin. L. R.; Sloan, C. P.; Beno, B. R.; Gao, Q.; Cunningham, M. A.; Mattson, G. K.; Molski, T. F.; Taber, M. T.; Lodge, N. J. Conformationally Restricted Homotryptamines. Indole Cyclopropylmethylamines as Selective Serotonin Reuptake Inhibitors. J. Med. Chem. 2005, 48, 6023-6034. (b) Anthes, R.; Benoit, S.; Chen, C.; Corbett, E. A.; Corbett, R. M.; DelMonte, A. J.; Gingras, S.; Livingston, R. C.; Pendri, Y.; Sausker, J.; Soumeillant, M. An Improved Synthesis of a Selective Serotonin Reuptake Inhibitor. Org. Process. Res. Dev. 2008, 12, 178-182. 15
  16. King, F. D.; Gaster, L. M.; Kaumann, A. J.; Young, R. C. Medicaments 1,2,3,4- tetrahydrocarbazoles and 5-HT 1 Agonist use thereof. 27 Oct 1998 US 5,827,871. otwiera się w nowej karcie
  17. Boggs, S. D.; Catalano, J. G.; Gudmundsson, K. S.; Richardson, L. D.; Sebahar, P.
  18. R. Novel cycloalkyl condensed Indoles. 17 Dec 2006 US2006/0281804 A1. otwiera się w nowej karcie
  19. Fillion, E.; Fishlock, D.; Wilsily, A.; Goll, J. M. Meldrum's Acids as Acylating Agents in the Catalytic Intramolecular Friedel−Crafts Reaction. J. Org. Chem. 2005, 70, 1316-1327. (b) Fillion, E.; Dumas, A. M.; Hogg, S. A. Modular Synthesis of Tetrahydrofluorenones from 5-Alkylidene Meldrum's Acids. J. Org. Chem. 2006, 71, 9899-9902. (c) Fillion, E.; Fishlock, D. Convenient Access to Polysubstituted 1- Indanones by Sc(OTf) 3 -Catalyzed Intramolecular Friedel−Crafts Acylation of Benzyl Meldrum's Acid Derivatives. Org. Lett. 2003, 5, 4653-4656. otwiera się w nowej karcie
  20. Oikawa, Y.; Hirasawa, H.; Yonemitsu, O. Meldrum's acid in organic synthesis. 1. otwiera się w nowej karcie
  21. A convenient one-pot synthesis of ethyl indole propionates. Tetrahedron Lett. 1978, 20, 1759-1762. otwiera się w nowej karcie
  22. Dardennes, E.; Gerard, S.; Petermann, C.; Sapi, J. Diasteroselctive trimolecular condensation between indole, Meldrum's acid and chiral sugar-derivatived aldehydes. Tetrahedron: Asymmetry 2010, 21, 208-215. (b) Dardennes, E.; Kovacs-Kulyassa, A.; Boisbrun, M.; Petermann, C.; Laronze, J. Y.; Sapi, J. Diastereocontrolled multicomponent pathway to 3,4-heterocycle-annulated tetrahydro-β-carbolines Tetrahedron: Asymmetry 2005, 16, 1329-1339. otwiera się w nowej karcie
  23. Dumas, A. M.; Seed, A.; Zorzitto, A. K.; Fillion, E. A general and practical preparation of alkylidene Meldrum's acids Tetrahedron Lett. 2007, 48, 7072-7074. otwiera się w nowej karcie
  24. Pellissier, H. Asymmetric organocatalysis. Tetrahedron 2007, 63, 9267-9331. otwiera się w nowej karcie
  25. Marcelli, T.; Hiemstra, H. Cinchona Alkaloids in Asymmetric Organocatalysis. Synthesis 2010, 8, 1229-1279. (c) Melchiorre, P.; Marigo, M.; Carlone, A.; Bartoli, G. 16 otwiera się w nowej karcie
  26. Asymmetric aminocatalysis-gold rush in organic chemistry. Angew. Chem. Int. Ed. 2008, 47, 6138-6171. (d) Vilavan, T.; Bhanthumnavin, W. Organocatalyzed Asymmetric α- Oxidation, α-Aminoxylation and α-Amination of Carbonyl Compounds. Molecules 2010, 15, 917-958. (e) Desimoni, G.; Faita, G.; Quadrelli, P. Substituted (E)-2-Oxo-3- butenoates: Reagents for Every Enantioselectively-Catalyzed Reaction. Chem. Rev. 2013, 113, 5924-5988.
  27. Terrasson, V.; Figueiredo, R. M.; Campagne, J. M. Organocatalyzed otwiera się w nowej karcie
  28. Asymmetric Friedel-Crafts Reactions. Eur. J. Org. Chem. 2010, 14, 2635-2655. (b) Lu,
  29. H. H.; Tan, F.; Xiao, W. J. Enantioselective Organocatalytic Friedel-Crafts Alkylations.
  30. Curr. Org. Chem. 2011, 15, 4022-4045. (c) Marques-Lopez, E.; Diez-Martinez, A.; Merino, P.; Herrera, R. P. The Role of the Indole in Important Organocatalytic Enantioselective Friedel-Crafts Alkylation Reactions. Curr. Org. Chem. 2009, 13, 1585- 1609. (d) Herrera, R. P.; Sgarzani, V.; Bernardi, V.; Ricci, A. Catalytic enantioselective otwiera się w nowej karcie
  31. Friedel-Crafts alkylation of indoles with nitroalkenes by using a simple thiourea organocatalyst. Angew. Chem. Int. Ed. 2005, 44, 6576-6579. (e) Scettri, A.; Villano, R.; Acocella, M. R.; Asymmetric Friedel-Crafts Alkylation of Indole with Chalcones Catalyzed by Chiral Phosphoric Acids. Molecules 2009, 14, 3030-3036. (f) Wang, X.; Zheng, C.; Zhao, S.; Chai, Z.; Zhao, G.; Yang, G. Organocatalyzed Friedel-Craft-type reaction of 2-naphthol with β,γ-unsaturated α-keto ester to form novel optically active naphthopyran derivatives. Tetrahedron: Asymmetry. 2008, 19, 2699-2704. otwiera się w nowej karcie
  32. Łyżwa, D.; Dudziński, K.; Kwiatkowski, P. High-Pressure Accelerated
  33. Asymmetric Organocatalytic Friedel-Crafts Alkylation of Indoles with Enones: Application to Quaternary Stereogenic Centers Construction. Org. Lett. 2012, 3, 1540- 1543. (b) Li, J.; Yue, C.; Chen, P.; Xiao, Y.; Chen, Y. Remote enantioselective Friedel- Crafts alkylations of furans through HOMO activation. Angew. Chem. Int. Ed. 2014, 53, 5449-5452. (c) Zhou, C. Y.; Sun, X.; Tang, Y. Cu(OTf) 2 /trisoxazoline catalyzed asymmetric Friedel-Crafts reaction of pyrroles with alkylidene malonates Tetrahedron 2008, 64, 10676-10680. (d) Siau, W. Y.; Wang, J. Asymmetric organocatalytic reactions by bifunctional amine-thioureas. Catal. Sci. Technol. 2011, 1, 1298-1310.
  34. Dumas, A. M.; Fillion, E. Meldrum's Acids and 5-Alkylidene Meldrum's Acids in Catalytic Carbon−Carbon Bond-Forming Processes. Acc. Chem. Res. 2010, 43, 440-454. (b) Ivanov, A. S. Meldrum's acid and related compounds in the synthesis of natural products and analogs. Chem. Soc. Rev. 2008, 37, 789-811. (c) Lipson, V.V.; Gorobets, N. Y. One hundred years of Meldrum's acid: advances in the synthesis of pyridine and pyrimidine derivatives. Mol. Divers. 2009, 13, 399-419. (d) Gaber, A. A. otwiera się w nowej karcie
  35. M.; McNab, H. Synthetic Applications of the Pyrolysis of Meldrum's Acid Derivatives. Synthesis 2001, 14, 2059-2074. (e) Janikowska, K.; Rachon, J.; Makowiec, S. Acyl
  36. Meldrum's acid derivatives: application in organic synthesis. Russ. Chem. Rev. 2014, 83, 620-637. (f) Mahoney, S. J.; Dumas, A. M.; Fillion, E. Asymmetric Addition of Alkenylstannanes to Alkylidene Meldrum's Acids. Org. Lett. 2009, 11, 5346-5349. (g) otwiera się w nowej karcie
  37. Watanabe, T.; Knopfel, T. F.; Carreira, E. M. Asymmetric Conjugate Addition Reactions of Meldrum's Acid Derived Acceptors Employing Chiral Phosphoramidite Ligands. Org. otwiera się w nowej karcie
  38. Lett. 2003, 5, 4557-4558. (h) Wilsily, A.; Fillion, E. Asymmetric Synthesis of All-Carbon Benzylic Quaternary Stereocenters via Conjugate Addition to Alkylidene and Indenylidene Meldrum's Acids. J. Org. Chem. 2009, 74, 8583-8594. (i) Fillion, E.; Zorzitto, A. K. Enantioselective Rhodium-Catalyzed Conjugate Alkynylation of 5- Benzylidene Meldrum's Acids with TMS-acetylene. J. Am. Chem. Soc. 2009, 131, 14608-14609. (j) Riguet, E. Enantioselective Organocatalytic Friedel-Crafts Alkylation Reaction of Indoles with 5-Hydroxyfuran-2(5H)-one: Access to Chiral γ-Lactones and γ- Lactams via a Ugi 4-Center 3-Component Reaction. J. Org. Chem. 2011, 76, 8143-8150. 18
  39. Reisman, S. E.; Doyle, A. G.; Jacobsen, E. N. Enantioselective Thiourea- Catalyzed Additions to Oxocarbenium Ions. J. Am. Chem. Soc. 2008, 130, 7198-7199. otwiera się w nowej karcie
  40. Martin, N. J. A.; Ozores, L.; List, B. Organocatalytic Asymmetric Transfer Hydrogenation of Nitroolefins. J. Am. Chem. Soc. 2007, 129, 8976-8977. (c) Zuend, S. J.; Jacobsen, E. N. Mechanism of Amido-Thiourea Catalyzed Enantioselective Imine Hydrocyanation: Transition State Stabilization via Multiple Non-Covalent Interactions. J. Am. Chem. Soc. 2009, 131, 15358-15374.
  41. Schaumann, E.; Kausch, E.; Walter, W. 1:1, 2:1 und 3:1-Addukte aus der Umsetzung von Isothiocyanaten mit 3-Dimethylamino-2,2dimethyl-2H-azirin. Chem. otwiera się w nowej karcie
  42. Ber. 1977, 10, 820-832. otwiera się w nowej karcie
  43. Tarkanyi, G.; Kiraly, P.; Varga, Sz.; Vakulya, B.; Soos, T. Edge-to-Face CH/π
  44. Aromatic Interaction and Molecular Self-Recognition in epi-Cinchona-Based Bifunctional Thiourea Organocatalysis. Chem. Eur. J. 2008, 14, 6078-6086. otwiera się w nowej karcie
Źródła finansowania:
  • Foundation for Polish Science (POMOST/2013-8/6),
Weryfikacja:
Politechnika Gdańska

wyświetlono 114 razy

Publikacje, które mogą cię zainteresować

Meta Tagi