Nondestructive Testing of the Miter Gates Using Various Measurement Methods - Publikacja - MOST Wiedzy

Wyszukiwarka

Nondestructive Testing of the Miter Gates Using Various Measurement Methods

Abstrakt

When any problems related to civil engineering structures appear, identifying the issue through the usage of only one measuring method is difficult. Therefore, comprehensive tests are required to identify the main source. The strains and displacement measurements, as well as modal identification, are widely used in the nondestructive testing of structures. However, measurements are usually carried out at several points and confirm or exclude only one of many potential causes of the problem. The main aim of this paper is to identify the causes of miter gates’ excessive vibration. The research includes displacement measurements using a tachometer and a laser scanner, acceleration measurements connected with modal analysis, and calculations with the finite element method (FEM) model. The numerical model underwent verification regarding test results. Particular attention was paid to evaluate the practical use of a laser scanner for diagnosing miter gates. Unlike classical methods, it measures many points. The analysis eliminated a number of potential causes of excessive vibration and highlighted the field of excessive deformation. The identified anomaly could be associated with bearings’ misalignment after closing the door. This construction part should be subjected to further research using classical methods. The laser scanning has been proven to be a method that can only generally present the deformation of the structure.

Cytowania

  • 6

    CrossRef

  • 6

    Web of Science

  • 7

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 4 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
SENSORS nr 20, strony 1 - 22,
ISSN: 1424-8220
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Binczyk M., Kalitowski P., Szulwic J., Tysiąc P.: Nondestructive Testing of the Miter Gates Using Various Measurement Methods// SENSORS -Vol. 20,iss. 6 (2020), s.1-22
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/s20061749
Bibliografia: test
  1. Eick, B.; Treece, Z.R.; Spencer, B.F.; Smith, M.D.; Sweeney, S.C.; Alexander, Q.G.; Foltz, S.D. Automated damage detection in miter gates of navigation locks. Struct. Control. Heal. Monit. 2017, 25, e2053. [CrossRef] otwiera się w nowej karcie
  2. Eick, B.A.; Treece, Z.R.; Spencer, B.F., Jr.; Smith, M.D.; Sweeney, S.C.; Alexander, Q.G.; Foltz, S.D. Miter Gate Gap Detection Using Principal Component Analysis; ERDC-TR-18-2, US Army Engineer Research and Development Center: Vicksburg, MI, USA, 2018. otwiera się w nowej karcie
  3. Zienkiewicz, O.C.; Taylor, R.L.; Zhu, J.Z. The Finite Element Method: Its Basis and Fundamentals; Elsevier: San Diego, CA, USA, 2005; ISBN 0-08-047277-X. otwiera się w nowej karcie
  4. Hartmann, F.; Katz, C. Structural Analysis with Finite Elements, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 978-3-540-49698-4. otwiera się w nowej karcie
  5. Zhu, L.; Lyu, L.; Zhang, X.; Wang, Y.; Guo, J.; Xiong, X. Bending Properties of Zigzag-Shaped 3D Woven Spacer Composites: Experiment and FEM Simulation. Materials 2019, 12, 1075. [CrossRef] otwiera się w nowej karcie
  6. Kawecki, B.; Podgórski, J. Numerical Analysis and Its Laboratory Verification in Bending Test of Glue Laminated Timber Pre-Cracked Beam. Materials 2019, 12, 955. [CrossRef] otwiera się w nowej karcie
  7. Rainieri, C.; Fabbrocino, G. Operational Modal Analysis of Civil. Engineering Structures: An. Introduction and Guide for Applications; Springer: Berlin/Heidelberg, Germany, 2014. Sensors 2020, 20, 1749 20 of 22 otwiera się w nowej karcie
  8. Brownjohn, J.M.W.; Moyo, P.; Omenzetter, P.; Lu, Y. Assessment of Highway Bridge Upgrading by Dynamic Testing and Finite-Element Model Updating. J. Bridg. Eng. 2003, 8, 162-172. [CrossRef] otwiera się w nowej karcie
  9. Degrauwe, D.; Reynders, E.; De Roeck, G.; Van den Broeck, P. Operational modal analysis and updating of a footbridge. In Proceedings of the 7th European Conference on Structural Dynamics, Southampton, UK, 7-9 July 2008.
  10. Zhang, L.; Huang, J. Dynamic interaction analysis of the high-speed maglev vehicle/guideway system based on a field measurement and model updating method. Eng. Struct. 2019, 180, 1-17. [CrossRef] otwiera się w nowej karcie
  11. Pavic, A.; Hartley, M.J.; Waldron, P. Updating of the Analytical Models of Two Footbridges Based on Modal Testing of Full-Scale Structures. In Proceedings of the International Seminar on Modal Analysis, Los Angeles, CA, USA, 28 October 1998.
  12. Salawu, O.S.; Williams, C. Bridge assessment using forced-vibration testing. J. Struct. Eng. 1995, 121, 161-173. [CrossRef] otwiera się w nowej karcie
  13. Salawu, O.S. Detection of structural damage through changes in frequency: A review. Eng. Struct. 1997, 19, 718-723. [CrossRef] otwiera się w nowej karcie
  14. Maadani, S.; Akbari, R.; Maalek, S. Monitoring the dynamic characteristics of an urban bridge before, during and after widening. Struct. Infrastruct. Eng. 2015, 11, 944-956. [CrossRef] otwiera się w nowej karcie
  15. Worden, K.; Friswell, M.I. Modal-Vibration-Based Damage Identification. In Encyclopedia of Structural Health Monitoring; otwiera się w nowej karcie
  16. Boller, C., Chang, F.-K., Fujino, Y., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2008; ISBN 978-0-470-05822-0.
  17. Naito, H.; Bolander, J.E. Damage detection method for RC members using local vibration testing. Eng. Struct. 2019, 178, 361-374. [CrossRef] otwiera się w nowej karcie
  18. Kim, J.-T.; Ryu, Y.-S.; Cho, H.-M.; Stubbs, N. Damage identification in beam-type structures: Frequency-based method vs mode-shape-based method. Eng. Struct. 2003, 25, 57-67. [CrossRef] otwiera się w nowej karcie
  19. Brincker, R.; Andersen, P.; Cantieni, R. Identification and Level I Damage Detection of the Z24 Highway Bridge. Exp. Tech. 2001, 25, 51-57. [CrossRef] otwiera się w nowej karcie
  20. Shatilov, Y.Y.; Lyapin, A.A. Vibration-Based Damage Detection Techniques for Health Monitoring of Construction of a Multi-Storey Building. Mater. Sci. Forum 2018, 931, 178-183. [CrossRef] otwiera się w nowej karcie
  21. Fitzgerald, P.C.; Malekjafarian, A.; Bhowmik, B.; Prendergast, L.J.; Cahill, P.; Kim, C.-W.; Hazra, B.; Pakrashi, V.; OBrien, E.J. Scour Damage Detection and Structural Health Monitoring of a Laboratory-Scaled Bridge Using a Vibration Energy Harvesting Device. Sensors 2019, 19, 2572. [CrossRef] [PubMed] otwiera się w nowej karcie
  22. Liu, H.; He, X.; Jiao, Y. Damage Identification Algorithm of Hinged Joints for Simply Supported Slab Bridges Based on Modified Hinge Plate Method and Artificial Bee Colony Algorithms. Algorithms 2018, 11, 198. [CrossRef] otwiera się w nowej karcie
  23. Kang, F.; Li, J.; Xu, Q. Damage detection based on improved particle swarm optimization using vibration data. Appl. Soft Comput. 2012, 12, 2329-2335. [CrossRef] otwiera się w nowej karcie
  24. Zielińska, M.; Rucka, M. Non-Destructive Assessment of Masonry Pillars using Ultrasonic Tomography. Materials 2018, 11, 2543. [CrossRef] otwiera się w nowej karcie
  25. Rucka, M. Monitoring Steel Bolted Joints during a Monotonic Tensile Test Using Linear and Nonlinear Lamb Wave Methods: A Feasibility Study. Metals 2018, 8, 683. [CrossRef] otwiera się w nowej karcie
  26. Żółtowski, K.; Romaszkiewicz, T. Roof of PGE Arena-The Stadium Built for Euro 2012 in Gdansk. BAUINGENIEUR-GERMANY 2012, 87, 137-142. otwiera się w nowej karcie
  27. Żółtowski, K. Footbridges, numerical approach. In Footbridge Vibration Design; Caetano, E., Cunha, A., Hoorpah, W., Raoul, J., Eds.; CRC Press: Boca Raton, FL, USA, 2009; pp. 53-70. otwiera się w nowej karcie
  28. Żółtowski, K.; Binczyk, M.; Kalitowski, P. Footbridges. Dynamic Design-Selected problems. In Footbridge 2017 Berlin-Tell A Story; Technische Universität Berlin: Berlin, Germany, 2017; pp. 1-10.
  29. Zoltowski, K.; Wask, T. Cable stayed bridge over Vistula river in Plock. In Dynamic analysis and site test. In Proceedings of the International Conference on Bridges, Dubrovnik, Croatia, 21-24 May 2006;
  30. Radic, J., Ed.; Structural Engineering Conferences and Croatian Society of Structural Engineers: Dubrovnik, Croatia, 2006. otwiera się w nowej karcie
  31. Miskiewicz, M.; Makowska, K. Displacement measurements during load testing of railway arch bridge. In Proceedings of the 17th International Multidisciplinary Scientific Geoconference, SGEM 2017 Conference Proceedings, Albena, Bulgaria, 29 June-5 July 2017. [CrossRef] otwiera się w nowej karcie
  32. Strach, M.; Makowska, K. Analyzing the Geometry of the Turnouts and Their Adjustment Basing on the Tacheometer Measurements. In Proceedings of the 2016 Baltic Geodetic Congress (BGC Geomatics), Gdansk, Poland, 2-4 June 2016; pp. 28-33. otwiera się w nowej karcie
  33. Filipiak-Kowszyk, D.; Janowski, A.; Kamiński, W.; Makowska, K.; Szulwic, J.; Wilde, K. The geodetic monitoring of the engineering structure-a practical solution of the problem in 3D space. Rep. Geod. Geoinformatics 2016, 102, 1-14. [CrossRef] otwiera się w nowej karcie
  34. Acosta, L.E.; De Lacy, M.C.; Ramos, M.I.; Cano, J.P.; Herrera, A.M.; Avilés, M.; Gil, A.J. Displacements Study of an Earth Fill Dam Based on High Precision Geodetic Monitoring and Numerical Modeling. Sensors 2018, 18, 1369. [CrossRef] otwiera się w nowej karcie
  35. Sekiya, H.; Kinomoto, T.; Miki, C. Determination Method of Bridge Rotation Angle Response Using MEMS IMU. Sensors 2016, 16, 1882. [CrossRef] [PubMed] otwiera się w nowej karcie
  36. Yang, K.; Yan, L.; Huang, G.; Chen, C.; Wu, Z. Monitoring Building Deformation with InSAR: Experiments and Validation. Sensors 2016, 16, 2182. [CrossRef] [PubMed] otwiera się w nowej karcie
  37. Yang, Q.; Zhang, Z.; Liu, X.; Ma, S. Development of Laser Scanner for Full Cross-Sectional Deformation Monitoring of Underground Gateroads. Sensors 2017, 17, 1311. [CrossRef] [PubMed] otwiera się w nowej karcie
  38. Gui, R.; Xu, X.; Zhang, D.; Lin, H.; Pu, F.; He, L.; Cao, M. A Component Decomposition Model for 3D Laser Scanning Pavement Data Based on High-Pass Filtering and Sparse Analysis. Sensors 2018, 18, 2294. [CrossRef] [PubMed] otwiera się w nowej karcie
  39. Scaioni, M.; Marsella, M.; Crosetto, M.; Tornatore, V.; Wang, J. Geodetic and Remote-Sensing Sensors for Dam Deformation Monitoring. Sensors 2018, 18, 3682. [CrossRef] otwiera się w nowej karcie
  40. Ziolkowski, P.; Szulwic, J.; Miskiewicz, M. Deformation Analysis of a Composite Bridge during Proof Loading Using Point Cloud Processing. Sensors 2018, 18, 4332. [CrossRef] otwiera się w nowej karcie
  41. Ge, Y.; Tang, H.; Gong, X.; Zhao, B.; Lu, Y.; Chen, Y.; Lin, Z.; Chen, H.; Qiu, Y. Deformation Monitoring of Earth Fissure Hazards Using Terrestrial Laser Scanning. Sensors 2019, 19, 1463. [CrossRef] otwiera się w nowej karcie
  42. Schmitz, B.; Holst, C.; Medic, T.; Lichti, D.D.; Kuhlmann, H. How to Efficiently Determine the Range Precision of 3D Terrestrial Laser Scanners. Sensors 2019, 19, 1466. [CrossRef] otwiera się w nowej karcie
  43. Simm, A.; Wang, Q.; Huang, S.; Zhao, W. Laser based measurement for the monitoring of shaft misalignment. Measurement 2016, 87, 104-116. [CrossRef] otwiera się w nowej karcie
  44. Zheng, F.; Shao, L.; Racic, V.; Brownjohn, J. Measuring human-induced vibrations of civil engineering structures via vision-based motion tracking. Measurement 2016, 83, 44-56. [CrossRef] otwiera się w nowej karcie
  45. Burke, R.D.; Burke, K.A.; Chappell, E.C.; Gee, M.; Williams, R. A novel use of multivariate statistics to diagnose test-to-test variation in complex measurement systems. Measurement 2018, 130, 467-481. [CrossRef] otwiera się w nowej karcie
  46. Zhang, G.; Zappalá, D.; Crabtree, C.; Donaghy-Spargo, C.; Hogg, S. Duffy, A. Validation of a non-contact technique for torque measurements in wind turbines using an enhanced transient FSV approach. Measurement 2019. [CrossRef] otwiera się w nowej karcie
  47. Khalili, P.; Cawley, P. The choice of ultrasonic inspection method for the detection of corrosion at inaccessible locations. NDT E Int. 2018, 92, 80-92. [CrossRef] otwiera się w nowej karcie
  48. Safari, A.; Zhang, J.; Velichko, A.; Drinkwater, B.W. Assessment methodology for defect characterisation using ultrasonic arrays. NDT E Int. 2018, 94, 126-136. [CrossRef] otwiera się w nowej karcie
  49. Howard, R.; Cegla, F. Detectability of corrosion damage with circumferential guided waves in reflection and transmission. NDT E Int. 2017, 91, 108-119. [CrossRef] otwiera się w nowej karcie
  50. Howard, R.; Cegla, F.B. On the probability of detecting wall thinning defects with dispersive circumferential guided waves. NDT E Int. 2017, 86, 73-82. [CrossRef] otwiera się w nowej karcie
  51. Alvin, K.; Robertson, A.; Reich, G.; Park, K. Structural system identification: From reality to models. Comput. Struct. 2003, 81, 1149-1176. [CrossRef] otwiera się w nowej karcie
  52. Ewins, D.J. Modal Testing : Theory, Practice and Application, Mechanical Engineering Research studies/Engineering Dynamics Series 10; Research Studies Press: Baldock, UK, 2000; ISBN 978-0-86380-218-8. otwiera się w nowej karcie
  53. Pappa, R.S.; Juang, J.N. An Eigensystem Realization Algorithm (ERA) for modal parameter identification and model reduction. In Proceedings of the Workshop on Identification and Control of Flexible Space Struct, San Diego, CA, USA, 1 April 1985; Volume 3.
  54. Suzuki, H.; Juang, J.-N. An Eigensystem Realization Algorithm in Frequency Domain for modal parameter identification. In Proceedings of the AIAA/AAS Astrodynamics Specialist Conference, Williamsburg, Virginia, 18-20 August 1986.
  55. De Schutter, B. Minimal state-space realization in linear system theory: An overview. J. Comput. Appl. Math. 2000, 121, 331-354. [CrossRef] otwiera się w nowej karcie
  56. Li, P.; Hu, S.; Li, H. Noise issues of modal identification using eigensystem realization algorithm. Procedia Eng. 2011, 14, 1681-1689. [CrossRef] otwiera się w nowej karcie
  57. Caicedo, J.M. Practical guidelines for the natural excitation technique (NExT) and the eigensystem realization algorithm (ERA) for modal identification using ambient vibration. Exp. Tech. 2010, 35, 52-58. [CrossRef] otwiera się w nowej karcie
  58. Allemang, R.J. The Modal Assurance Criterion-Twenty Years of Use and Abuse. Sound Vib. 2003, 37, 14-23.
  59. Pappa, R.S.; Elliott, K.B.; Schenk, A. Consistent-mode indicator for the eigensystem realization algorithm. J. Guid. Control. Dyn. 1993, 16, 852-858. [CrossRef] otwiera się w nowej karcie
  60. Miskiewicz, M.; Lachowicz, J.; Tysiac, P.; Jaskuła, P.; Wilde, K. The application of non-destructive methods in the diagnostics of the approach pavement at the bridges. IOP Conf. Series: Mater. Sci. Eng. 2018, 356, 012023. [CrossRef] otwiera się w nowej karcie
  61. Commander, B.C.; Schulz, J.X.; Goble, G.G.; Chasten, C.P. Detection of Structural Damage on Miter Gates; otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 64 razy

Publikacje, które mogą cię zainteresować

Meta Tagi