Numerical analysis of pile installation effects in cohesive soils - Publikacja - MOST Wiedzy

Wyszukiwarka

Numerical analysis of pile installation effects in cohesive soils

Abstrakt

In this thesis the empirical equation for radial effective stress calculation after displacement pile installation and following consolidation phase has been proposed. The equation is based on the numerical studies performed with Updated Lagrangian, Arbitrary Lagrangian-Eulerian and Coupled Eulerian-Lagrangian formulations as well as the calibration procedure with database containing world-wide 30 pile static loading tests in cohesive soils. The empirical formula has been validated with 10 pile static load tests performed in Poznań clay and its reliability has been compared with 7 pile design methods. In this thesis, the description of research methodology and brief review of Finite Element Method with emphasis on large deformation formulations have been given. The key soil parameters which influence the radial stresses after pile installation and subsoil consolidation, both modelled numerically, have been identified. Next, the numerical methods have been validated with a high quality instrumented pile installation test in London clay and simulations of CPT and CPT-u soundings in Koszalin and Poznań clays, respectively. As a consequence of numerical tests interpretation, the general form of the empirical relation for radial effective stress has been provided. This relation has been calibrated with high quality, 30 pile static load tests. Next, the reliability of pile bearing capacity prediction with the proposed empirical formula has been checked using the database of all 75 piles and reference piles in Poznań site. Besides the validation of the author's equation for radial effective stress after installation and subsequent consolidation, the numerical calculation for the reference pile in Poznań site has been carried out. Numerical calculations include large deformation analysis where all pile construction steps have been taken into account and simplified finite element model where author's empirical formula have been adopted to predict the load-settlement response of the reference pile. Finally, the limitations of the proposed formula are provided and the further possible research directions due to pile installation effects are pointed out.

Cytowania

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Cytuj jako

Informacje szczegółowe

Kategoria:
Doktoraty, rozprawy habilitacyjne, nostryfikacje
Typ:
praca doktorska pracowników zatrudnionych w PG oraz studentów studium doktoranckiego
Język:
angielski
Rok wydania:
2018
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.13140/rg.2.2.35636.35203
Bibliografia: test
  1. Aquatic Park -total axial force has been calculated as the sum of pile tension capacityweight given by authors (Pelletier and Doyle, 1982). otwiera się w nowej karcie
  2. Pentre -Clarke and Lambson (1993) reported peak and residual total axial force for LDP pile. In table 9.1 the peak value is used. The pile testes given by Chow (1997) are recovered from databases provided by Lehane et al. (2013) and Karlsrud (2012). (1993) otwiera się w nowej karcie
  3. Tilbrook -the cyclic tests have been performed in Tilbrook (Karlsrud, 2012, 2014). otwiera się w nowej karcie
  4. The Q SLT is provided for the first static loading test. The total axial force for LDP piles is a peak value (Clarke et al., 1993). otwiera się w nowej karcie
  5. Canons Park -the data concerning the tests performed by Bond (1989) and Wardle et. al. (1992) are recovered from Lehane et al. (2013).
  6. Cowden -pile data are based on Lehane and Jardine (1994a) paper and supplemented after Lehane et al. (2013).
  7. Bothkennar -pile data are based on Lehane and Jardine (1994b) data and supplemented after Lehane et al. (2013).
  8. Belfast -pile data are based on MaCabe and Lehane (2006), Doherty and Gavin (2011) papers and supplemented after Lehane et al. (2013).
  9. In piles denoted by numbers from no. 31 to no. 59 no or ambiguous information about interface angle at failure has been given. Consequently, the values provided by Lehane et al. (2013) or estimated with relation δ f =⅔ϕ' cs (e.g., Tsubakihara et al., 1993) have been used. The other notes to this data set are as follows: otwiera się w nowej karcie
  10. Haga, West Delta, Lierstranda and Onsoy -all data are adopted after Karlsrud (2012) database.
  11. Cowden -undrained shear strength is taken from Lehane and Jardine (1994a) data and Karlsrud (2012) uses similar values. However, OCR values seem to be overestimated in Karlsrud's database, so Lehane and Jardine (1994a) OCRs are used. otwiera się w nowej karcie
  12. Mortaiolo -data taken from Totani et al. (1994) and supplemented by Lehane et al. (2013) database. otwiera się w nowej karcie
  13. Mexico city -the interface angle of 36º is a post-peak value after initial fast shearing stage. However, the laboratory tests shows residual values also close to 30º (Saldivar and Jardine, 2005). otwiera się w nowej karcie
  14. Dublin -the interface angle of 32º is a peak value (Farrel et al., 1998). The high differences are encountered in pile shaft capacity during tension and compression test. Also extremely high pile toe capacity is recorded. Thus, reliability of those data is limited. Pile denoted by numbers from no. 60 to no. 75 are a group of poor quality data where no information is given about interface behaviour and effective angle of friction. Thus, the is assumed to be equal to 2,5 which is a medium value from previously reported piles. Consequently, corresponding stress ratio M is equal to 1,15. The following notes are made to this part of dataset:
  15. Hamilton -data are adopted from Karlsrud (2012) thesis and they slightly different than in Lehane et al. (2013) database. otwiera się w nowej karcie
  16. St. Alban -data are consistent with Karlsrud's (2012) database. otwiera się w nowej karcie
  17. Noetsu Bridge -data are consistent with Lehane at al. (2013) paper. The undrained shear strength is estimated from CPT sounding. otwiera się w nowej karcie
  18. Golden Ears Bridge -data are directly taken from Amimi et al. (2008) report and they are slightly different than reported by Lehane et al. (2013). otwiera się w nowej karcie
  19. Sandpoint -data are consistent with Lehane (2013) database. otwiera się w nowej karcie
  20. Houston -data are adopted after Karlsrud (2012) thesis and they slightly differ from those reported by Lehane et al. (2013). otwiera się w nowej karcie
  21. Sarapui -data are consistent with Lehane et al. (2013) paper.
  22. Stjordal, Femern -data are taken from Karlsrud (2012) database. The calculated capacity versus measured pile capacity for collected data is presented in figure 9.3. The general observation is that a good agreement is achieved and most of data sets in 50% range from perfect fit. This is confirmed with average Q c /Q m of 1,02 and COV of 0,29. The satisfactory agreement have been also achieved for pile shaft capacity calculation (AVG=1,03 and COV=0,32). Two piles has been removed from analysis (pile no. 59 and no.
  23. due to significant scatter from the rest database. The histogram with Gauss curve for the data presented in table 9.6 is shown in figure 9.4 and, as one can see, relatively good results 173 otwiera się w nowej karcie
  24. Abu-Farsakh, M., Tumay, M.T., Voyiadis, G.Z., 2003. Numerical parametric study of piezocone penetration test in clays. International Journal of Geomechanics 3, 170-181. doi:10.1061/(ASCE)1532-3641(2003)3:2(170) otwiera się w nowej karcie
  25. Almeida, M.S.S., Danziger, F.A.B., Lunne, T., 1996. Use of the piezocone test to predict the axial capacity of driven and jacked piles in clay. Canadian Geotechnical Journal 33, 23-41. doi:10.1139/t96-022 otwiera się w nowej karcie
  26. Alves, A.M.L., Lopes, F.R., Randolph, M.F., 2009. Investigations on the dynamic behavior of a small-diameter pile driven in soft clay. Canadian Geotechnical Journal 46, 1418- 1430. doi:10.1139/T09-069 otwiera się w nowej karcie
  27. American Petroleum Institute, 2000. Recommended practice of planning, designing and constructing fixed offshore platforms (No. RP2A), 16th edition. Washington, DC. otwiera się w nowej karcie
  28. Amini, A., Fellenius, B.H., Sabbagh, M., Neasgaard, E., Buehler, M., 2008. Pile loading tests at Golden Ears Bridge. Presented at the 61st Canadian Geotechnical Conference, Edmonton, Canada.
  29. Atkinson, J., 2007. The mechanics of soils and foundations. Taylor & Francis Group.
  30. Axelsson, G., 2000. Long-Term Set-up of Driven Piles at Sand, Ph.D.Thesis. ed. Royal Institute of Technology, Stockholm.
  31. Azzouz, A., Morrison, M., 1988. Field Measurements on Model Pile in Two Clay Deposits. Journal of Geotechnical Engineering 114, 104-121. doi:10.1061/(ASCE)0733- 9410(1988)114:1(104) otwiera się w nowej karcie
  32. Azzouz, A.S., Krizek, R.J., Corotis, R.B., 1976. Regression analysis of soil compressibility. Soils and Foundations 16, 19-29. doi:10.3208/sandf1972.16.2_19 otwiera się w nowej karcie
  33. Bałachowski, L., 2006a. Soft soil overconsolidation and CPTU dissipation test. Archives of Hydroengineering and Environmental Mechanics 53, 155-180.
  34. Bałachowski, L., 2006b. Scale effect in shaft friction from the direct shear interface tests. Archives of Civil and Mechanical Engineering 6, 13-28. doi:10.1016/S1644- 9665(12)60238-6 otwiera się w nowej karcie
  35. Baligh, M.M., 1985. Strain path method. Journal of Geotechnical Engineering 111, 1108- 1136. otwiera się w nowej karcie
  36. Baligh, M.M., 1975. Theory of deep site static cone penetration resistance, Final Report Massachusetts Insitute of Technology. ed. Department of Civil Engineering., Massachusetts Insitute of Technology, Cambridge. otwiera się w nowej karcie
  37. Baligh, M.M., Levadoux, J.N., 1980. Pore pressure dissipation after cone penetration. Department of Civil Engineering, Massachusetts Institute of Technology, Massachusetts.
  38. Baligh, M.M., Scott, R.F., 1976. Analysis of wedge penetration in clay. Geotechnique 26, 185-208. doi:10.1680/geot.1976.26.1.185 otwiera się w nowej karcie
  39. Barlov, J., 1976. Optimal stress locations in finite element models. International Journal for Numerical Methods in Engineering 10, 243-251. doi:10.1002/nme.1620100202 otwiera się w nowej karcie
  40. Bathe, K.J., 1996. Finite Element Procedures. Prentice Hall, New Jersey.
  41. Bayoumi, A., Bobet, A., Lee, J., 2008. Pullout capacity of a reinforced soil in drained and undrained conditions. Finite Elements in Analysis and Design 44, 525-536. doi:10.1016/j.finel.2008.01.009 otwiera się w nowej karcie
  42. Belytschko, T., Chiapetta, R.L., Bartel, H.D., 1976. Efficient large scale non-linear transient analysis by finite elements. International Journal for Numerical Methods in Engineering 10, 579-596. doi:10.1002/nme.1620100308 otwiera się w nowej karcie
  43. Benson, C.H., Zhai, H., Rashad, S.M., 1992. Assessment of Construction Quality Control Measurements and Sampling Frequencies For Compacted Soil Liners (No. Environmental Geotechnics Report No. 92-6). University of Wisconsin-Madison, Madison, Wisconsin. otwiera się w nowej karcie
  44. Benson, D.J., 1992. Computational methods in Lagrangian and Eulerian hydrocodes. Computer methods in Applied mechanics and Engineering 99, 235-394. doi:10.1016/0045-7825(92)90042-I otwiera się w nowej karcie
  45. Benson, D.J., Okazawa, S., 2004. Contact in a multi-material Eulerian finite element formulation. Computer methods in applied mechanics and engineering 193, 4277- 4298. doi:10.1016/j.cma.2003.12.061 otwiera się w nowej karcie
  46. Beuth, L., 2012. Formulation and Application of a Quasi-Static Material Point Method, PhD Thesis. ed. University of Stuttgart, Stuttgart.
  47. Bienen, B., Qiu, G., Pucker, T., 2015. CPT correlation developed from numerical analysis to predict jack-up foundation penetration into sand overlying clay. Ocean Engineering 108, 2016-226. doi:10.1016/j.oceaneng.2015.08.009 otwiera się w nowej karcie
  48. Bjorhus, J., 1995. Jonathan Turner, Airplane Engineer. The Seattle Times.
  49. Bond, A.J., 1989. Behaviour of displacement piles in overconsolidated clays, PhD Thesis. ed. Imperial College London, London, UK.
  50. Bond, A.J., Jardine, R.J., 1995. Shaft capacity of displacement piles in a high OCR clay. Geotechnique 45, 3-23. doi:10.1680/geot.1995.45.1.3 otwiera się w nowej karcie
  51. Bond, A.J., Jardine, R.J., 1991. Effects of installing displacement piles in a high OCR clay. Geotechnique 41, 341-363. otwiera się w nowej karcie
  52. Brown, D.A., Turner, J.P., Castelli, R.J., 2010. Drilled Shafts: Construction Procedures and LRFD Design Methods (No. FHWA NHI-10-016). National Highway Institute, U.S. Department of Transportation Federal Highway Administration, Washington.
  53. Brown, K.H., Burns, S.P., Christon, M.A., 2002. Coupled Eulerian-Lagrangian methods for earth penetrating weapon applications (No. SAND2002-1014). Sandia National Laboratories, Albuquerque, New Mexico, US. otwiera się w nowej karcie
  54. Burns, S.E., Mayne, P.W., 1998. Monotonic and dilatory pore-pressure decay during piezocone tests in clay. Canadian Geotechnical Journal 35, 1063-1073. doi:10.1139/t98-062 otwiera się w nowej karcie
  55. Bustamante, M., Gianeselli, L., 1982. Pile bearing capacity predictions by means of static penetrometer CPT. Presented at the 2nd European Symposium on Penetration Testing, Baklema, Amsterdam, Netherlands, pp. 493-500.
  56. Ceccato, F., Beuth, L., Simonini, P., 2016. Analysis of Piezocone Penetration under Different Drainage Conditions with the Two-Phase Material Point Method. Journal of Geotechnical and Geoenvironmental Engineering 140, 04016066. doi:10.1061/ (ASCE)GT.1943-5606.0001550 otwiera się w nowej karcie
  57. Chandler, R.J., Leroueil, S., Trenter, N.A., 1990. Measurements of the permeability of London Clay using a self-boring permeameter. Geotechnique 40, 113-124. doi:10.1680/geot.1990.40.1.113 otwiera się w nowej karcie
  58. Chen, B.S.Y., Mayne, P.W., 1994. Profiling the overconsolidation ratio of clays by piezocone tests, Internal Report GIT-CEEGEO-94-1. ed. Georgia Institute of Technology, Atlanta.
  59. Chen, C.S., Liew, S.S., Tan, Y.C., 1999. Time Effects on The Bearing Capacity of Driven Piles. Presented at the 11th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, Balkema, pp. 175-178.
  60. Chen, X., Zhang, J., Xiao, Y., Li, J., 2015. Effect of roughness on shear behavior of red clay- concrete interface in large-scale direct shear tests. Canadian Geotechnical Journal 52, 1122-1135. doi:10.1139/cgj-2014-0399 otwiera się w nowej karcie
  61. Chin, F.K., 1970. Estimation of the ultimate load of piles not carried to failure. Presented at the 2nd Southeast Asia Conference on Soil Engineering, Southeast Asian Society of Soil Engineering, Singapore, pp. 81-90.
  62. Chow, F.C., 1997. Investigations into the behaviour of displacement piles for offshore foundations, PdD Thesis. ed. Imperial College London, London. otwiera się w nowej karcie
  63. Clarke, J., Lambson, M.D., 1993. Large diameter pile test program -summary, in: Offshore Site Investigation and Foundation Behaviour. Presented at the Advances in Underwater Technology, Ocean Science and Offshore Engineering, Springer, London, UK, pp. 513-549. otwiera się w nowej karcie
  64. Clarke, J., Long, M.M., Hamilton, J., 1993. The axial tension test of an instrumented pile in overconsolidated clay at Tilbrook Grange, in: Large-Scale Pile Tests in Clay. Presented at the Recent large-scale fully intrumented pile tests in clay, Thomas Telford Ltd., London, UK. doi:10.1680/lptic.19188.0017 otwiera się w nowej karcie
  65. Cooke, R.W., Price, G., 1973. Strains and displacements around friction piles. Presented at the 8th International Conference on Soil Mechanics and Foundation Engineering, Moscow, pp. 53-60.
  66. Cooke, R.W., Price, G., Tarr, K., 1979. Jacked piles in London Clay: a study of load transfer and settlement under working conditions. Geotechnique 29, 113-147. doi:10.1680/geot.1979.29.2.113 otwiera się w nowej karcie
  67. Coop, M.R., 1987. The axial capacity of driven piles in clay, PhD Thesis. ed. University of Oxford, Oxford.
  68. Coop, M.R., Wroth, C.P., 1989. Field studies of an instrumented model pile in clay. Geotechnique 39, 679-696. doi:10.1680/geot.1989.39.4.679 otwiera się w nowej karcie
  69. Cummings, A.E., Kerkhoff, G.O., Peck, R.B., 1950. Effect of driving piles into soft clay. Transactions of the American Society of Civil Engineers 115, 275-285.
  70. Dai, Z.H., Qin, Z.Z., 2013. Numerical and theoretical verification of modified cam-clay model and discussion on its problems. Journal of Central South University 20, 3305- 3313. doi:10.1007/s11771-013-1854-7 otwiera się w nowej karcie
  71. Dassault Systèmes, 2013. Abaqus 6.13 Documentation. otwiera się w nowej karcie
  72. Dassault Systémes, 1999. Answers to Common ABAQUS Questions. otwiera się w nowej karcie
  73. DeBorst, R., Vermeer, P.A., 1984. Possibilities and limitations of finite element for limit analysis. Geotechnique 32, 199-210. otwiera się w nowej karcie
  74. Doherty, P., Gavin, K., 2013. Pile Aging in Cohesive Soils. Journal of Geotechnical and Geoenvironmental Engineering 139, 1620-1624. doi:10.1061/(ASCE)GT.1943- 5606.0000884 otwiera się w nowej karcie
  75. Doherty, P., Gavin, K., 2011. The shaft capacity of displacement piles in clay: a state of the art review. Geotechnical and Geological Engineering 29, 389-410. doi:10.1007/s10706- 010-9389-2 otwiera się w nowej karcie
  76. Donea, J., Giuliani, S., Halleux, J.P., 1982. An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Computer methods in applied mechanics and engineering 33, 689-723. otwiera się w nowej karcie
  77. Donea, J., Huerta, A., Ponthot, J.-P., Rodriguez-Ferran, A., 2004. Arbitrary Lagrangian- Eulerian Methods, in: Encyclopedia of Computational Mechanic. John Wiley & Sons, Ltd., pp. 413-437. otwiera się w nowej karcie
  78. Eid, H.T., Amarasinghe, R.S., Rabie, K.H., Wijewickreme, D., 2014. Residual shear strength of fine-grained soils and soil-solid interfaces at low effective normal stresses. Canadian Geotechnical Journal 52, 198-210. doi:10.1139/cgj-2014-0019 otwiera się w nowej karcie
  79. Farrel, E.R., Lehane, B.M., Looby, M., 1998. Instrumented driven pile in Dublin boulder clay. Proceedings of the Institution of Civil Engineers -Geotechnical Engineering 131, 233-241. doi:10.1680/igeng.1998.30715 otwiera się w nowej karcie
  80. Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S., 1999. A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). Journal of computational physics 152, 457-492. doi:10.1006/jcph.1999.6236 otwiera się w nowej karcie
  81. Fellenius, B.H., Harris, D., Anderson, D.G., 2004. Static loading test on a 45 m long pipe pile in Sandpoint, Idaho. Canadian Geotechnical Journal 41, 613-628. doi:10.1139/t04-012 otwiera się w nowej karcie
  82. Fellenius, B.H., Samson, L., 1976. Testing of drivability of concrete piles and disturbance to sensitive clay. Canadian Geotechnical Journal 13, 139-160. doi:10.1139/t76-015 otwiera się w nowej karcie
  83. Fleming, K., Weltman, A., Randolph, M., Elson, K., 2009. Piling Engineering, third. ed. Taylor & Francis Group, New York. otwiera się w nowej karcie
  84. Gallagher, K.A., St. John, H.D., 1980. Field scale model studies of piles as anchorages for buoyant platforms. Presented at the European Offshore Petroleum Conference and Exhibition, London, UK.
  85. Gavin, K., Gallagher, D., Doherty, P., McCabe, B., 2010. Field investigation of the effect of installation method on the shaft resistance of piles in clay. Canadian Geotechnical Journal 47, 730-741. doi:10.1139/T09-146 otwiera się w nowej karcie
  86. Gawriuczenkow, I., 2005. Iły poznañskie jako izolacyjne bariery geologiczne składowisk odpadów komunalnych. Przegląd Geologiczny 53, 691-694.
  87. Geotechdata.info, 2013. Angle of Friction [WWW Document].
  88. Geotechdata.info. URL http://geotechdata.info/parameter/angle-of-friction.html (accessed 12.14.13).
  89. Gingold, R.A., Monaghan, J.J., 1977. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly notices of the royal astronomical society 181, 375-389. otwiera się w nowej karcie
  90. Grabe, J., Henke, S., Pucker, T., Hamann, T., 2013. CEL: simulations for soil plugging, screwed pile installation and deep vibration compaction. Presented at the International Conference on Installation Effects in Geotechnical Engineering, CRC Press, Rotterdam, The Netherlands. otwiera się w nowej karcie
  91. Hamann, T., Grabe, J., 2013. A simple dynamic approach for the numerical modelling of soil as a two phase material. Geotechnik 36, 180-191. doi:10.1002/gete.201200018 - otwiera się w nowej karcie
  92. Hamann, T., Qiu, G., Grabe, J., 2015. Application of a Coupled Eulerian-Lagrangian approach on pile installation problems under partially drained conditions. Computers and Geotechnics 63, 279-290. doi:10.1016/j.compgeo.2014.10.006 otwiera się w nowej karcie
  93. Hara, A., Ohta, T., Niwa, M., Tanaka, S., Banno, T., 1974. Shear modulus and shear strength of cohesive soils. Soils and Foundations 14, 1-12. otwiera się w nowej karcie
  94. Heerema, J.P., 1980. Predicting pile driveability: Heather as an illustration of the friction fatigue theory. Ground Engineering 13, 15-37. otwiera się w nowej karcie
  95. Hirt, C.., Amsden, A.A., Cook, J.L., 1974. An arbitrary Lagrangian-Eulerian computing method for all flow speeds. Journal of Computational Physics 14, 227-253. doi:10.1016/0021-9991(74)90051-5 otwiera się w nowej karcie
  96. Holloway, D.M., Beddard, D.L., 1995. Dynamic testing results, indicator pile test program, I- 880, Oakland, California. Presented at the 20th Annual Members Conference and Meeting, Deep Foundations Institute, Charleston, South Carolina, pp. 105-126. otwiera się w nowej karcie
  97. Holtz, W.G., Lowitz, C.A., 1965. Effects of driving displacement piles in lean clay. Journal of the Soil Mechanics and Foundations Division 91, 1-14.
  98. Housel, W.S., Burkey, J.R., 1948. Investigation to determine the driving characteristics of piles in soft clay. Presented at the 2nd International Conference on Soil Mechanics and Foundation Engineering, Rotterdam, pp. 146-154.
  99. Huang, S., 1988. Application of Dynamic M easurement on Long H-Pile Driven into Soft Ground in Shanghai. Presented at the 3rd International Conference on the Application of Stress-Wave Theory to Piles, Ottawa, Ontario, Canada, pp. 635-643.
  100. Hunt, C.E., 2000. Effect of pile installation on static and dynamic soil properties, PhD dissertation. ed. University of California, Department of Civil and Environmental Engineering, Berkeley, California. Introduction to Finite Element Methods, 2015. . University of Colorado, Boulder. Janbu, N., 1976. Static bearing capacity of friction piles. Presented at the 6th European Conference on Soil Mechanics and Foundation Engineering, Vienna, Austria, pp. 479- 488.
  101. Jardine, R.J., 1985. Investigations of pile-soil behaviour, with special reference to the foundations of offshore structures, PhD Thesis. ed. Imperial College London, London.
  102. Jardine, R.J., Chow, F.C., Overy, R., Standing, J., 2005. ICP design methods for driven piles in sands and clays. Thomas Telford Ltd., London. otwiera się w nowej karcie
  103. Jardine, R.J., Symes, J.M., Burland, J.B., 1984. Measurement of soil stiffness in the triaxial apparatus. Geotechnique 34, 323-340. doi:10.1680/geot.1984.34.3.323 otwiera się w nowej karcie
  104. Jiangtao, Y., 2009. Centrifuge and Numerical Modelling of Sand Compaction Pile Installation, Phd Thesis. ed. National University of Singapore, Singapore.
  105. Karlsrud, K., 2014. Ultimate Shaft Friction and Load-Displacement Response of Axially Loaded Piles in Clay Based on Instrumented Pile Tests. Journal of Geotechnical and Geoenvironmental Engineering 140, 04014074. doi:10.1061/(ASCE)GT.1943- 5606.0001170 otwiera się w nowej karcie
  106. Karlsrud, K., 2012. Prediction of load-displacement behaviour and capacity of axially loaded piles in clay based on analyses and interpretation of pile load test results, PhD Thesis. ed. Norwegian University of Science and Technology, Trondheim. otwiera się w nowej karcie
  107. Karlsrud, K., Clausen, C.J.F., Aas, P.M., 2005. Bearing Capacity of Driven Piles in Clay, the NGI Approach. Presented at the Intenational Symposium on Frontiers in Offshore Geotechnics, Perth, Australia, pp. 775-782.
  108. Karlsrud, K., Haugen, T., 1985. Axial static capacity of steel model piles in overconsolidated clay. Presented at the 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, pp. 1401-1406. otwiera się w nowej karcie
  109. Karlsrud, K., Kalsnes, B., Nowacki, F., 1993. Response of piles in soft clay and silt deposits to static and cyclic axial loading based on recent instrumented pile load tests, in: Offshore Site Investigation and Foundation Behaviour. Presented at the Advances in Underwater Technology, Ocean Science and Offshore Engineering, Springer, London, UK, pp. 549-584. otwiera się w nowej karcie
  110. Kennedy, J.M., Belytschko, T.B., 1982. Theory and application of a finite element method for arbitrary Lagrangian-Eulerian fluids and structures. Nuclear engineering and design 68, 129-146. doi:10.1016/0029-5493(82)90026-7 otwiera się w nowej karcie
  111. Kiousis, P.D., Voyiadis, G.Z., Tumay, M.T., 1988. A large strain theory and its application in the analysis of the cone penetration mechanism. International Journal for Numerical and Analytical Methods in Geomechanics 12, 45-60. otwiera się w nowej karcie
  112. Knupp, P., Margolin, L.G., Shashkov, M., 2002. Reference Jacobian Optimization-Based Rezone Strategies for Arbitrary Lagrangian Eulerian Methods. Journal of Computational Physics 176, 93-128. doi:10.1006/jcph.2001.6969 otwiera się w nowej karcie
  113. Komurka, V.E., Wagner, A.B, Edil, T.B, 2003. A Review of Pile Set-Up. Presented at the 51st Annual Geotechnical Engineering Conference, University of Minnesota, Minnesota, pp. 105-130.
  114. Konkol, J., 2015. Numerical estimation of the pile toe and shaft unit resistances during the installation process in sands. Studia Geotechnica et Mechanica 37, 37-44. doi:10.1515/sgem-2015-0005 otwiera się w nowej karcie
  115. Konkol, J., Bałachowski, L., 2017. Influence of Installation Effects on Pile Bearing Capacity in Cohesive Soils -Large Deformation Analysis Via Finite Element Method. Studia Geotechnica et Mechanica 39, 27-38. doi:10.1515/sgem-2017-0003 otwiera się w nowej karcie
  116. Konkol, J., Bałachowski, L., 2016. Large deformation finite element analysis of undrained pile installation. Studia Geotechnica et Mechanica 38, 45-54. doi:10.1515/sgem-2016- 0005 otwiera się w nowej karcie
  117. Konrad, J.M., Roy, M., 1987. Bearing capacity of friction piles in marine clay. Geotechnique 37, 163-175. doi:10.1680/geot.1987.37.2.163 otwiera się w nowej karcie
  118. Krabbenhoft, K., Zhang, X., 2013. Particle Finite Element Method For Extreme Deformation Problems.
  119. Kraft, L.M., Focht, J.A., Amerasinghe, S.F., 1981. Friction Capacity of Piles Driven Into Clay. Journal of the Geotechnical Engineering Division 107, 1521-1541. otwiera się w nowej karcie
  120. Kulhawy, F.H., Mayne, P.W., 1990. Manual on estimating soil properties for foundation design. Electric Power Research Institute, Palo Alto, California, USA. otwiera się w nowej karcie
  121. Larisch, M., 2014. Behaviour of stiff, fine-grained soil during the installation of screw auger displacement piles, PhD Thesis. ed. University of Queensland, Queensland, Australia. otwiera się w nowej karcie
  122. Law, K.T., Holtz, R.D., 1978. A note on Skempton's A parameter with rotation of principal stresses. Geotechnique 28, 57-64. doi:10.1680/geot.1978.28.1.57 otwiera się w nowej karcie
  123. Lehane, B.M., 1992. Experimental investigations of pile behaviour using instrumented field piles, PhD Thesis. ed. Imperial College London, London.
  124. Lehane, B.M., Gill, D.R., 2004. Displacement fields induced by penetrometer installation in an artificial soil. International Journal of Physical Modelling in Geotechnics 4, 25-36. doi:10.1680/ijpmg.2004.040103 otwiera się w nowej karcie
  125. Lehane, B.M., Jardine, R.J., 1994a. Displacement pile behaviour in glacial clay. Canadian Geotechnical Journal 31, 79-90. doi:10.1139/t94-009 otwiera się w nowej karcie
  126. Lehane, B.M., Jardine, R.J., 1994b. Displacement-pile behaviour in a soft marine clay. Canadian Geotechnical Journal 31, 181-191. doi:0.1139/t94-024 otwiera się w nowej karcie
  127. Lehane, B.M., Li, Y., Williams, R., 2013. Shaft capacity of displacement piles in clay using the cone penetration test. Journal of Geotechnical and Geoenvironmental Engineering 139, 253-266. doi:10.1061/(ASCE)GT.1943-5606.0000749 otwiera się w nowej karcie
  128. Lemos, L.J.L., 1986. The effect of rate on residual strength of soil, PhD Thesis. ed. Imperial College London, London.
  129. Levadoux, J.N., Baligh, M.M., 1986. Consolidation after undrained piezocone penetration. I: Prediction. Journal of Geotechnical Engineering 112, 707-726. doi:10.1061/ (ASCE)0733-9410(1986)112:7(707) otwiera się w nowej karcie
  130. Li, Y., Li, J., 2009. Behavior of the Penetration Process of Model Jacked Pile in Layered Soil. The Electronic Journal of Geotechnical Engineering 14P, 1-10. otwiera się w nowej karcie
  131. Lied, E.K.., 2010. A Study of time effects on pile capacity. EYELGIP, Brno, Czech Republic.
  132. Liu, G.R., Quek, S.S., 2013. The Finite Element Method: A Practical Course. Butterworth- Heinemann. otwiera się w nowej karcie
  133. Liyanapathirana, D.S., 2009. Arbitrary Lagrangian Eulerian based finite element analysis of cone penetration in soft clay. Computers and Geotechnics 36, 851-860. doi:10.1016/j.compgeo.2009.01.006 otwiera się w nowej karcie
  134. Long, J., Wysockey, M., Kerrigan, J., 1999. Measured Time Effects for Axial Capacity of Driven Piling. Transportation Research Record Journal of the Transportation Research Board 1663, 8-15. doi:10.3141/1663-02 otwiera się w nowej karcie
  135. Mabsout, M.E., Tassoulas, J.L., 1994. A finite element model for the simulation of pile driving. International Journal for Numerical Methods in Engineering 37, 257-278. doi:10.1002/nme.1620370206 otwiera się w nowej karcie
  136. Marchetti, S., 1980. In situ tests by flat dilatometer. Journal of Geotechnical and Geoenvironmental Engineering 106, 299-321.
  137. Marchetti, S., Monaco, P., Totani, G., Calabrese, M., 2001. The Flat Dilatometer Test (DMT) in Soil Investigations, in: A Report by the ISSMGE Committee TC16. Presented at the International Conference on In Situ Measurement of Soil Properties and Case Histories, Bali, Indonesia, p. 41pp. otwiera się w nowej karcie
  138. Margolin, L.G., 2013. Arbitrary Lagrangian-Eulerian (ALE) methods a personal perspective.
  139. Mašín, D., Stutz, H., 2017. Hypoplastic interface models for fine grained soils. International - Journal for Numerical and Analytical Methods in Geomechanics 41, 284-303. doi:10.1002/nag.2561 otwiera się w nowej karcie
  140. Matlock, H., Bogard, D., McClelland, F., Chan, J.H., 1998. Technical Program-Tension Pile Study. Presented at the Offshore Technology Conference, Houston, USA. otwiera się w nowej karcie
  141. Matsumoto, T., Michi, Y., Hirano, T., 1995. Performance of axially loaded steel pipe piles driven in soft rock. Journal of Geotechnical Engineering 121, 305-315. doi:10.1061/ (ASCE)0733-9410(1995)121:4(305) otwiera się w nowej karcie
  142. Mayne, P.W., 2001. Stress-strain-strength-flow parameters from enhanced in-situ tests. Presented at the International Conference on In Situ Measurement of Soil Properties and Case Histories, Graduate Program, Parahyangan Catholic University, Bali, Indonesia, pp. 27-47.
  143. Mayne, P.W., 1991. Determination of OCR in clays by piezocone tests using cavity expansion and critical state concepts. Soils and Foundations 31, 65-76. doi:10.3208/sandf1972.31.2_65 otwiera się w nowej karcie
  144. Mayne, P.W., 1988. Determining OCR in clays from laboratory strength. Journal of Geotechnical Engineering 114, 76-92. doi:10.1061/(ASCE)0733- 9410(1988)114:1(76) otwiera się w nowej karcie
  145. McCabe, B., Lehane, B.M., 2006. Behavior of axially loaded pile groups driven in clayey silt. Journal of Geotechnical and Geoenvironmental Engineering 132, 401-410. doi:10.1061/(ASCE)1090-0241(2006)132:3(401) otwiera się w nowej karcie
  146. Meyerhof, G.G., 1976. Bearing Capacity and Settlement of Pile Foundations. Journal of the Geotechnical Engineering Division 102, 195-228. otwiera się w nowej karcie
  147. Mittal, R., Iaccarino, G., 2005. Immersed boundary methods. Annual Review of Fluid Mechanics 37, 239-261. doi:10.1146/annurev.fluid.37.061903.175743 otwiera się w nowej karcie
  148. Ni, Q., Hird, C.C., Guymer, I., 2010. Physical modelling of pile penetration in clay using transparent soil and particle image velocimetry. Geotechnique 60, 121-132. doi:10.1680/geot.8.P.052 otwiera się w nowej karcie
  149. Noh, W.F., 1963. CEL: a time-dependent, two-space dimensional, coupled Eulerian- Lagrangian code, Lawrence Radiation Lab. ed. University of California, Livermore. Nonlinear Finite Element Methods, 2016. . University of Colorado, Boulder. otwiera się w nowej karcie
  150. Obrzud, R.F., Truty, A., Vulliet, L., 2011. Numerical modeling and neural networks to identify model parameters from piezocone tests: I. FEM analysis of penetration in two phase - continuum. International Journal for Numerical and Analytical Methods in Geomechanics 35, 1703-1730. doi:10.1002/nag.972 otwiera się w nowej karcie
  151. Olovsson, L., 2000. On the Arbitrary Lagrangian-Eulerian Finite Element Method, Dissertation No. 635. ed. Linköping Studies in Technology, Linköping University, Linköping, Sweden.
  152. Oñate, E., Idelsohn, S.R., Del Pin, F., Aubry, R., 2004. The particle finite element method-an overview. International Journal of Computational Methods 1, 267-307. otwiera się w nowej karcie
  153. O'Neill, M.W., Hawkins, R.A., Audibert, J.M., 1982a. Installation of pile group in overconsolidated clay. Journal of the Geotechnical Engineering Division 108, 1369- 1385.
  154. O'Neill, M.W., Hawkins, R.A., Mahar, L.J., 1982b. Load transfer mechanism in piles and pile groups. Journal of the Geotechnical Engineering Division 108, 1605-1623. otwiera się w nowej karcie
  155. Ove Arup and Partners, 1986. Research on the behaviour of piles as anchors for buoyant structures (Offshore Technology Report No. OTH 86215). London, UK. otwiera się w nowej karcie
  156. Pelletier, J.H., Doyle, E.H., 1982. Tension capacity in silty clays -Beta pile test. Presented at the 2nd International Conference on Numerical Methods in Offshore Piling, University of Texas, Austin, Texas, pp. 163-181. otwiera się w nowej karcie
  157. Peskin, C.S., 1972. Flow patterns around heart valves: a numerical method. Journal of computational physics 10, 252-271. doi:10.1016/0021-9991(72)90065-4 otwiera się w nowej karcie
  158. Pestana, J.M., Hunt, C.E., Bray, J.D., 2002. Soil deformation and excess pore pressure field around a closed-ended pile. Journal of geotechnical and geoenvironmental engineering 128, 1-12. doi:10.1061/(ASCE)1090-0241(2002)128:1(1) otwiera się w nowej karcie
  159. Phuong, N.T.V., van Tol, A.F., Elkadi, A.S.K., Rohe, A., 2014. Modelling of pile installation using the material point method, in: Numerical Methods in Geotechnical Engineering. Presented at the 8th European Conference on Numerical Methods in Geotechnical Engineering, Taylor & Francis Group, Delft, pp. 271-276. otwiera się w nowej karcie
  160. Plaxis Manuals, 2015. Material Models Manual.
  161. Ponniah, D.A., 1989. Instrumentation of a jacked in pile. Presented at the Geotechnical instrumentation in practice: Purpose, performance and interpretation, Thomas Telford Ltd., London, UK. doi:10.1680/giip.15159.0024 otwiera się w nowej karcie
  162. Popov, V., 2010. Contact mechanics and friction: physical principles and applications. Springer, Berlin.
  163. Potts, D.M., Zdravković, L., 1999. Finite Element Analysis in Geotechnical Engineering: Theory. Thomas Telford Ltd. otwiera się w nowej karcie
  164. Potyondy, J.G., 1961. Skin Friction between variuos soils and construction materials. Geotechnique 11, 339-353. doi:10.1680/geot.1961.11.4.339 otwiera się w nowej karcie
  165. Qiu, G., Grabe, J., 2012. Numerical investigation of bearing capacity due to spudcan penetration in sand overlying clay. Canadian Geotechnical Journal 49, 1393-1407. doi:10.1139/t2012-085 otwiera się w nowej karcie
  166. Qiu, G., Henke, S., Grabe, J., 2011. Application of a Coupled Eulerian-Lagrangian approach on geomechanical problems involving large deformations. Computers and Geotechnics 38, 30-39. doi:10.1016/j.compgeo.2010.09.002 otwiera się w nowej karcie
  167. Randolph, M.F., 2003. Science and Empiricism in pile foundation design. Geotechnique 53, 847-875. doi:10.1680/geot.53.10.847.37518 otwiera się w nowej karcie
  168. Randolph, M.F., 1983. Design considerations for offshore piles. Presented at the Conference on Geotechnical Practice in Offshore Engineering, University of Texas at Austin, Austin, Texas, pp. 422-439. otwiera się w nowej karcie
  169. Randolph, M.F., Carter, J.P., Wroth, C.P., 1979a. Driven piles in clay-the effects of installation and subsequent consolidation. Geotechnique 29, 361-393. otwiera się w nowej karcie
  170. Randolph, M.F., Murphy, B.S., 1985. Shaft capacity of driven piles in clay. Presented at the 17th Annual Offshore Technical Conference, Houston, USA, pp. 371-378. otwiera się w nowej karcie
  171. Randolph, M.F., Steenfelt, J.S., Wroth, C.P., 1979b. The effect of pile type on design parameters for driven piles. Presented at the 7th European Conference on Soil Mechanics and Foundations in Engineering, Brighton, pp. 107-114. otwiera się w nowej karcie
  172. Randolph, M.F., Wroth, C.P., 1979. Randolph, M. F., & Wroth, C. P. (1979). An analytical solution for the consolidation around a driven pile. nternational Journal for Numerical and Analytical Methods in Geomechanics 3, 217-229. otwiera się w nowej karcie
  173. Robertson, P.K., Cabal, K.L., 2010. Guide for cone penetration testing for Geotechnical Engineering, 4th ed. Gregg Drilling and Testing, Inc.
  174. Robertson, P.K., Campanella, R.G., Gillespie, D., Grieg, J., 1986. Use of piezometer cone data. Presented at the Use of in situ tests in geotechnical engineering, American Society of Civil Engineers, New York, Virginia Tech, Blacksburg, Virginia, United States, pp. 1263-1280.
  175. Rosti, F., Abu-Farsakh, M., Jung, J., 2016. Development of Analytical Models to Estimate Pile Setup in Cohesive Soils Based on FE Numerical Analyses. Geotechnical and Geological Engineering 34, 1119-1134. doi:10.1007/s10706-016-0032-8 otwiera się w nowej karcie
  176. Roy, M., Blanchet, R., Tavenas, F., La Rochelle, P., 1981. Behaviour of a sensitive clay during pile driving. Canadian Geotechnical Journal 18, 67-85. doi:10.1139/t81-007 otwiera się w nowej karcie
  177. Sabetamal, H., Nazem, M., Carter, J.P., Sloan, S.W., 2014. Large deformation dynamic analysis of saturated porous media with applications to penetration problems. Computers and Geotechnics 55, 117-131. doi:10.1016/j.compgeo.2013.08.005 otwiera się w nowej karcie
  178. Sagaseta, C., Whittle, A.J., 2001. Prediction of Ground Movements due to Pile Driving in Clay. Journal of Geotechnical and Geoenvironmental Engineering 127, 55-66. doi:10.1061/(ASCE)1090-0241(2001)127:1(55) otwiera się w nowej karcie
  179. Saldivar, E.E., Jardine, R.J., 2005. Application of an effective stress design method to concrete piles driven in Mexico City clay. Canadian Geotechnical Journal 42, 1495- 1508. doi:10.1139/t05-062 otwiera się w nowej karcie
  180. Samson, L., Authier, J., 1986. Change in pile capacity with time: Case histories. Canadian Geotechnical Journal 23, 174-180. doi:10.1139/t86-027 otwiera się w nowej karcie
  181. Saye, S.R., Lutenegger, A.J., Brown, D.A., Kumm, B.P., 2016. Influence of Sample Disturbance on Estimated Side Resistance of Driven Piles in Cohesive Soils. Journal of Geotechnical and Geoenvironmental Engineering 142. doi:10.1061/ (ASCE)GT.1943-5606.0001517 otwiera się w nowej karcie
  182. Schmertmann, J.H., 1991. The Mechanical Aging of Soils. Journal of Geotechnical Engineering 117, 1288-1330. doi:10.1061/(ASCE)0733-9410(1991)117:9(1288) otwiera się w nowej karcie
  183. Segall, P., Fitzgerald, S.D., 1998. A note on induced stress changes in hydrocarbon and geothermal reservoirs. Tectonophysics 289, 117-128. doi:10.1016/S0040- 1951(97)00311-9 otwiera się w nowej karcie
  184. Sheng, D., Axelsson, K., Magnusson, O., 1997. Stress and strain fields around a penetrating cone. Presented at the th International Symposium on Numerical Models in Geomechanics, Balkema, Rotterdam, pp. 456-465.
  185. Sheng, D., Cui, L., Ansari, Y., 2013. Interpretation of cone factor in undrained soils via full- penetration finite-element analysis. International Journal of Geomechanics 13, 745- 753. doi:10.1061/(ASCE)GM.1943-5622.0000279 otwiera się w nowej karcie
  186. Sheng, D., Eigenbrod, K.D., Wriggers, P., 2005. Finite element analysis of pile installation using large-slip frictional contact. Computers and Geotechnics 32, 17-26. doi:10.1016/j.compgeo.2004.10.004 otwiera się w nowej karcie
  187. Sheng, D., Kelly, R., Pineda, J., Bates, L., 2014. Numerical study of rate effects in cone penetration test. Presented at the 3 rd International Symposium on Cone Penetration Testing, Las Vegas, Nevada. otwiera się w nowej karcie
  188. Sheng, D., Nazem, M., Carter, J.P., 2009. Some computational aspects for solving deep penetration problems in geomechanics. Computational Mechanics 44, 549-561. doi:10.1007/s00466-009-0391-6 otwiera się w nowej karcie
  189. Simpson, B., 1992. Retaining structures: displacement and design. Geotechnique 42, 541- 576. doi:10.1680/geot.1992.42.4.541 otwiera się w nowej karcie
  190. Skempton, A.W., 1960. Significance of Terzaghi's concept of effective stress, in: From Theory to Practice in Soil Mechanics. John Wiley & Sons, Ltd., New York. otwiera się w nowej karcie
  191. Skempton, A.W., 1954. The pore-pressure coefficients A and B. Geotechnique 4, 143-147. doi:10.1680/geot.1954.4.4.143 otwiera się w nowej karcie
  192. Skov, R., Denver, H., 1988. Time-dependence of bearing capacity of piles. Presented at the Third International Conference on the Application of Stress-Wave Theory to Piles, BiTech Publisher, Ottawa, pp. 879-888. otwiera się w nowej karcie
  193. Som, N.N., 1968. The effect of stress path on the deformation and consolidation of London Clay, PhD Thesis. ed. University of London (Imperial College London), London.
  194. Suleiman, M.T., Ni, L., Davis, C., Lin, H., Xiao, S., 2015. Installation Effects of Controlled Modulus Column Ground Improvement Piles on Surrounding Soil. Journal of Geotechnical and Geoenvironmental Engineering 142, 04015059. doi:10.1061/ (ASCE)GT.1943-5606.0001384 otwiera się w nowej karcie
  195. Sully, J.P., Robertson, P.K., Campanella, R.G., Woeller, D.J., 1999. An approach to evaluation of field CPTU dissipation data in overconsolidated fine-grained soils. Canadian Geotechnical Journal 36, 369-381. doi:10.1139/t98-105 otwiera się w nowej karcie
  196. Sulsky, D., Schreyer, H.L., 1996. isymmetric form of the material point method with applications to upsetting and Taylor impact problems. Computer Methods in Applied Mechanics and Engineering 139, 409-429. otwiera się w nowej karcie
  197. Terzaghi, K., 1943. Theoretical Soil Mechanics. John Wiley & Sons, Inc., New York. otwiera się w nowej karcie
  198. Terzaghi, K., 1925. Erdbaumechanik auf Bodenphysikalischer Grundlage. Franz Deuticke, Liepzig-Vienna. otwiera się w nowej karcie
  199. Terzaghi, K., Peck, R.B., Mesri, G., 1996. Soil mechanics in engineering practice, 3rd ed. John Wiley & Sons, Inc. otwiera się w nowej karcie
  200. Tho, K.K., Leung, C.F., Chow, Y.K., Swaddiwudhipong, S., 2013. Eulerian finite element simulation of spudcan-pile interaction. Canadian Geotechnical Journal 50, 595-608. doi:10.1139/cgj-2012-0288 otwiera się w nowej karcie
  201. Thomsen, L., 1986. Weak elastic anisotropy. Geophysics 51, 1954-1966. doi:10.1190/1.1442051 otwiera się w nowej karcie
  202. Tika, T., 1989. The effect of fast shearing on the residual strength of soils, Phd Thesis. ed. Imperial College London, London.
  203. Tomlinson, M., Woodward, J., 2015. Pile Design and Construction Practice, Sixth Edition. ed. CRC Press. otwiera się w nowej karcie
  204. Totani, G., Marchetti, S., Calabrese, M., Monaco, P., 1994. Field studies of an instrumented full-scale pile driven in clay. Presented at the XIII International Conference on Soil Mechanics and Foundation Engineering, CRC Press, New Delhi, India, pp. 695-698.
  205. Tsubakihara, Y., Kishida, H., 1993. Frictional behaviour between normally consolidated clay and steel by two direct shear type apparatuses. Soils and Foundations 33, 1-13. otwiera się w nowej karcie
  206. Tsubakihara, Y., Kishida, H., Nishiyama, T., 1993. Friction between cohesive soils and steel. Soils and foundations 33, 145-156. otwiera się w nowej karcie
  207. Turner, M.J., Clough, R.W., Martin, H.C., Topp, L.J., 1956. Stiffness and Deflection Analysis of Complex Structures. Journal of the Aeronautical Sciences 23, 805-523. otwiera się w nowej karcie
  208. Van Den Berg, P., 1994. Analysis of soil penetration, PhD Thesis. ed. Delft University of Technology, Delft.
  209. Vardanega, P.J., Bolton, M.D., 2013. Stiffness of clays and silts: Normalizing shear modulus and shear strain. Journal of Geotechnical and Geoenvironmental Engineering 139, 1575-1589. doi:10.1061/(ASCE)GT.1943-5606.0000887 otwiera się w nowej karcie
  210. Vermeer, P.A., Meier, C., -P., 1998. Standsicherheit und Verformungen bei tiefen Baugruben in bindigem Boden. Presented at the Vorträge der Baugrundtagung 1998 in Stuttgart, Stuttgart, pp. 133-148.
  211. Vermeer, P.A., Verruijt, A., 1981. An accuracy condition for consolidation by finite elements. International Journal for numerical and analytical methods in geomechanics 5, 1-14. doi:10.1002/nag.1610050103 otwiera się w nowej karcie
  212. Verruijt, A., 2016. Theory and problems of poroelasticity. Delft University of Technology, Delft.
  213. Walker, J., Yu, H.S., 2006. Adaptive finite element analysis of cone penetration in clay. Acta Geotechnica 1, 43-57. doi:10.1007/s11440-006-0005-9 otwiera się w nowej karcie
  214. Walton, P., Borg, S., 1998. Using Dynamic Pile Testing To Evaluate Quality and Verify Capacity of Driven Piles. Transportation Research Record: Journal of the Transportation Research Board 1633, 1-7. doi:10.3141/1633-15 otwiera się w nowej karcie
  215. Wang, D., Bienen, B., Nazem, M., Tian, Y., Zheng, J., Pucker, T., Randolph, M.F., 2015. Large deformation finite element analyses in geotechnical engineering. Computers and Geotechnics 65, 104-114. doi:10.1016/j.compgeo.2014.12.005 otwiera się w nowej karcie
  216. Wardle, I.F., Price, G., Freeman, T.J., 1992. Effect of Time and Maintained Load on the Ultimate Capacity of Pile in Stiff Clay, in: Piling, European Practice and Worldwide Trends. Presented at the Piling, European Practice and Worldwide Trends, Thomas Telford Ltd., London, UK. doi:10.1680/pepawt.35645.0015 otwiera się w nowej karcie
  217. Water Resources Board, 1972. The Hydrogeology of the London Basin. otwiera się w nowej karcie
  218. Wei, L., 2004. Numerical Simulation and Field Verification of Inclined Piezocone Penetration Test in Cohesive Soils, Phd Thesis. ed. Louisiana State University, Louisiana.
  219. Wei, L., Abu-Farsakh, M., Tumay, M.T., 2005. Finite-element analysis of inclined piezocone penetration test in clays. International Journal of Geomechanics 5, 167-178. doi:10.1061/(ASCE)1532-3641(2005)5:3(167) otwiera się w nowej karcie
  220. Wendel, E., 1900. On the test loading of piles and its application to foundation problems in Gothenburg. Tekniska Samfundets Handlingar 3-62.
  221. Whittle, A.J., Sutabutr, T., 1999. Prediction of pile setup in clay. Transportation Research Record: Journal of the Transportation Research Board 1663, 30-34. doi:10.3141/1663- 05 otwiera się w nowej karcie
  222. Woken, M.D., 2013. Advantages of a Pilot Study.
  223. Wroth, C.P., 1984. Interpretation of in situ soil tests. Geotechnique 34, 449-489. doi:10.1680/geot.1984.34.4.449 otwiera się w nowej karcie
  224. Wu, C.H., 2005. Continuum mechanics and plasticity. Chapman and Hall/CRC. otwiera się w nowej karcie
  225. Yi, J.T., Goh, S.H., Lee, F.H., Randolph, M.F., 2012. A numerical study of cone penetration in fine-grained soils allowing for consolidation effects. Geotechnique 62, 707-719. doi:10.1680/geot.8.P.155 otwiera się w nowej karcie
  226. Yi, J.T., Zhao, B., Li, Y.P., Yang, Y., Lee, F.H., Goh, S.H., Zhang, X.Y., Wu, J.F., 2014. Post- installation pore-pressure changes around spudcan and long-term spudcan behaviour in soft clay. Computers and Geotechnics 56, 133-147. doi:10.1016/j.compgeo.2013.11.007 otwiera się w nowej karcie
  227. Yu, H.-M., Ma, G.-W., Qiang, H.-F., Zhang, Y.-Q., 2007. Generalized plasticity. Springer, Berlin.
  228. Yu, H.S., 2000. Cavity expansion methods in geomechanics. Springer Netherlands, Dordrecht, Netherlands. otwiera się w nowej karcie
  229. Yu, H.S., Mitchell, J.K., 1998. Analysis of cone resistance: review of methods. Journal of Geotechnical and Geoenvironmental Engineering 124, 140-149. doi:10.1061/ (ASCE)1090-0241(1998)124:2(140) otwiera się w nowej karcie
  230. Zhou, T., Tan, F., Li, C., 2013. Numerical Analysis for Excess Pore Pressure Dissipation Process for Pressed Pile Installation. Applied Mechanics and Materials 405, 133-137. doi:10.4028/www.scientific.net/AMM.405-408.133 otwiera się w nowej karcie
  231. Zienkiewicz, O.C., 1995. Origins, milestones and directions of the finite element method -a personal view. Archives of Computational Methods in Engineering 2, 1-48. doi:10.1007/BF02736188 otwiera się w nowej karcie
  232. Zienkiewicz, O.C., Cheung, Y.K., 1967. The Finite Element Method in Continuum and Structural Mechanics. McGraw-Hill, New York.
Weryfikacja:
Politechnika Gdańska

wyświetlono 152 razy

Publikacje, które mogą cię zainteresować

Meta Tagi