Optimization-based stacked machine-learning method for seismic probability and risk assessment of reinforced concrete shear walls - Publikacja - MOST Wiedzy

Wyszukiwarka

Optimization-based stacked machine-learning method for seismic probability and risk assessment of reinforced concrete shear walls

Abstrakt

Efficient seismic risk assessment aids decision-makers in formulating citywide risk mitigation plans, providing insights into building performance and retrofitting costs. The complexity of modeling, analysis, and post-processing of the results makes it hard to fast-track the seismic probabilities, and there is a need to optimize the computational time. This research addresses seismic probability and risk assessment of reinforced concrete shear walls (RCSWs) by introducing stacked machine learning (Stacked ML) models based on Bayesian optimization (BO), genetic algorithm (GA), particle swarm optimization (PSO), and gradient-based optimization (GBO) algorithms. The study investigates 4-, to 15-Story RCSWs assuming different bay lengths and soil types to build a comprehensive database based on the incremental dynamic analysis (IDA) subjected to 56 near-field pulse-like and no-pulse records. Having 227,200 and 63,384 data points for a median of IDA curve (MIDA) and seismic probability curve, respectively, the proposed Stacked ML models have shown good performance on curve fitting ability by accuracy of 99.1% and 99.4% for MIDA and seismic fragility curves, respectively. In addition, the proposed models can estimate the mean annual frequency, λ, which is a key parameter in seismic risk assessment of buildings. To provide the results of the study for general buildings, a user-friendly GUI is proposed that facilitates result utilization, offering insights into seismic performance levels, providing the estimated MIDA and seismic failure probability curves, and mean annual frequency calculations for specific performance levels and seismic hazard curves.

Cytowania

  • 7

    CrossRef

  • 0

    Web of Science

  • 4

    Scopus

Cytuj jako

Pełna treść

pełna treść publikacji nie jest dostępna w portalu

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
EXPERT SYSTEMS WITH APPLICATIONS nr 255,
ISSN: 0957-4174
Język:
angielski
Rok wydania:
2024
Opis bibliograficzny:
Kazemi F., Asgarkhani N., Jankowski R.: Optimization-based stacked machine-learning method for seismic probability and risk assessment of reinforced concrete shear walls// EXPERT SYSTEMS WITH APPLICATIONS -Vol. 255,iss. Part D (2024), s.124897-
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.eswa.2024.124897
Źródła finansowania:
  • Publikacja bezkosztowa
Weryfikacja:
Politechnika Gdańska

wyświetlono 30 razy

Publikacje, które mogą cię zainteresować

Meta Tagi