Problems and challenges associated with estimating the emissions of organic compounds from indoor materials - Publikacja - MOST Wiedzy


Problems and challenges associated with estimating the emissions of organic compounds from indoor materials


For several years intensive research has been carried out with the aim of developing a database of the types and amounts of pollutants released from indoor materials to the indoor environment. The paper discusses in detail basic problems and challenges encountered when estimating the emissions of chemical compounds released from of indoor materials. Factors affecting the validity of data obtained by using two different types of analytical devices operating in a dynamic mode (the ex-situ methods) or passive mode (the in-situ methods) for collecting the analytes samples from the gaseous phase were discussed. The main advantages and important limitations of specific analytical devices and aspects of the morphology of the studied indoor material that may influence the type and amount of chemical compounds released into the air were also highlighted. Attention has also been drawn to challenges encountered when developing candidate reference materials dedicated for measuring emissions from indoor matrices.


  • 1


  • 1

    Web of Science

  • 1


Informacje szczegółowe

Publikacja w czasopiśmie
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
ISSN: 0165-9936
Rok wydania:
Opis bibliograficzny:
Marć M.: Problems and challenges associated with estimating the emissions of organic compounds from indoor materials// TRAC-TRENDS IN ANALYTICAL CHEMISTRY. -Vol. 97, (2017), s.297-308
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.trac.2017.09.022
Bibliografia: test
  1. C. Monn, Exposure assessment of air pollutants: a review on spatial hetero- geneity and indoor/outdoor/personal exposure to suspended particulate matter, nitrogen dioxide and ozone, Atmos. Environ. 35 (2001) 1e32. otwiera się w nowej karcie
  2. E. Hollbacher, T. Ters, C. Rieder-Gradinger, E. Srebotnik, Emissions of indoor air pollutants from six user scenarios in a model room, Atmos. Environ. 150 (2017) 389e394. otwiera się w nowej karcie
  3. K.W. Tham, Indoor air quality and its effects on humanseA review of chal- lenges and developments in the last 30 years, Energ. Build. 130 (2016) 637e650. otwiera się w nowej karcie
  4. U. Schlink, A. Thiem, T. Kohajda, M. Richter, K. Strebel, Quantile regression of indoor air concentrations of volatile organic compounds (VOC), Sci. Total Environ. 408 (2010) 3840e3851. otwiera się w nowej karcie
  5. E. Joo, H. Van Langenhove, M. Simpraga, K. Steppe, C. Amelynck, N. Schoon, J.- F. Müller, J. Dewulf, Variation in biogenic volatile organic compound emission pattern of Fagus sylvatica L. due to aphid infection, Atmos. Environ. 44 (2010) 227e234.
  6. C.D. Forester, J.R. Wells, Hydroxyl radical yields from reactions of terpene mixtures with ozone, Indoor Air 21 (2011) 400e409. otwiera się w nowej karcie
  7. T. Schripp, S. Langer, T. Salthammer, Interaction of ozone with wooden building products, treated wood samples and exotic wood species, Atmos. Environ. 54 (2012) 365e372. otwiera się w nowej karcie
  8. K. Azuma, I. Uchiyama, S. Uchiyama, N. Kunugita, Assessment of inhalation exposure to indor air pollutants: screening for health risks of multiple pol- lutants in Japanese dwellings, Environ. Res. 145 (2016) 39e49. otwiera się w nowej karcie
  9. I. Senitkova, Impact of indoor surface material on perceived air quality, Mater. Sci. Eng. C 36 (2014) 1e6. otwiera się w nowej karcie
  10. I. Senitkova, T. Tomcik, Interior materials impact to indoor air quality, Adv. Sci. Lett. 19 (2013) 955e959.
  11. D. Enescu, A review of thermal comfort models and indicators for indoor environments, Renew. Sust. Energ. Rev. 79 (2017) 1353e1379. otwiera się w nowej karcie
  12. Y. Zhang, X. Luo, X. Wang, K. Qian, R. Zhao, Influence of temperature on formaldehyde emission parameters of dry building materials, Atmos. Environ. 41 (2007) 3203e3216. otwiera się w nowej karcie
  13. Y.K. Lee, H.J. Kim, The effect of temperature on VOCs and carbonyl compounds emission from wooden flooring by thermal extractor test method, Build. En- viron. 53 (2012) 95e99. otwiera się w nowej karcie
  14. K.H. Han, J.S. Zhang, P. Wargocki, H.N. Knudsen, P.K. Varshney, B. Guo, Model- based approach to account for the variation of primary VOC emissions over time in the identification of indoor VOC sources, Build. Environ. 57 (2012) 403e416. otwiera się w nowej karcie
  15. F. Haghighat, L. De Bellis, Material emission rates: literature review, and the impact of indoor air temperature and relative humidity, Build. Environ. 33 (1998) 261e277. otwiera się w nowej karcie
  16. H. Huang, F. Haghighat, Modelling of volatile organic compounds emission from dry building materials, Build. Environ. 37 (2002) 1349e1360. otwiera się w nowej karcie
  17. A. Blondel, H. Plaisance, Validation of a passive flux sampler for on-site measurement of formaldehyde emission rates from building and furnishing materials, Anal. Methods 2 (2010) 2032e2038. otwiera się w nowej karcie
  18. M. Mar c, J. Namie snik, B. Zabiegała, Small-scale passive emission chamber for screening studies on monoterpene emission flux from the surface of wood- based indoor elements, Sci. Total Environ. 481 (2014) 35e46.
  19. J. Xiong, L. Wang, Y. Bai, Y. Zhang, Measuring the characteristic parameters of VOC emission from paints, Build. Environ. 66 (2013) 65e71. otwiera się w nowej karcie
  20. W. Liang, X. Yang, Indoor formaldehyde in real buildings: emission source identification, overall emission rate estimation, concentration increase and decay patterns, Build. Environ. 69 (2013) 114e120. otwiera się w nowej karcie
  21. L. Zhu, B. Deng, Y. Guo, A unified model for VOCs emission/sorption from/on building materials with and without ventilation, Int. J. Heat. Mass Transf. 67 (2013) 734e740. otwiera się w nowej karcie
  22. M. Li, Diffusion-controlled emissions of volatile organic compounds (VOCs): short-, mid-,and long-term emission profiles, Int. J. Heat. Mass Transf. 62 (2013) 295e302. otwiera się w nowej karcie
  23. Z. Liu, W. Ye, J.C. Little, Predicting emissions of volatile and semivolatile organic compounds from building materials: a review, Build. Environ. 64 (2013) 7e25. otwiera się w nowej karcie
  24. W. Ye, J.C. Little, D. Won, X. Zhang, Screening-level estimates of indoor exposure to volatile organic compounds emitted from building materials, Build. Environ. 75 (2014) 58e66. otwiera się w nowej karcie
  25. D.A. Missia, E. Demetriou, N. Michael, E.I. Tolis, J.G. Bartzis, Indoor exposure from building materials: a field study, Atmos. Environ. 44 (2010) 4388e4395. otwiera się w nowej karcie
  26. H.P. Hu, Y.P. Zhang, X.K. Wang, J.C. Little, An analytical mass transfer model for predicting VOC emissions from multi-layered building materials with convective surfaces on both sides, Inter. J. Heat Mass Transfer 50 (2007) 2069e2077. otwiera się w nowej karcie
  27. P. Wolkoff, Indoor air pollutants in office environments: assessment of com- fort, health, and performance, Int. J. Hyg. Environ. Health 216 (2013) 371e394. otwiera się w nowej karcie
  28. U. Schlink, S. Roder, T. Kohajda, D.K. Wissenbach, U. Franck, I. Lehmann, A framework to interpret passively sampled indoor-air VOC concentrations in health studies, Build. Environ. 105 (2016) 198e209. otwiera się w nowej karcie
  29. M.A. Bari, W.B. Kindzierski, A.J. Wheeler, M.E. Heroux, L.A. Wallace, Source apportionment of indoor and outdoor volatile organic compounds at homes in Edmonton, Canada, Build. Environ. 90 (2015) 114e124. otwiera się w nowej karcie
  30. M. Smiełowska, M. Mar c, B. Zabiegała, Indoor air quality in public utility environments-a review, Environ. Sci. Pollut. Res. 24 (2017) 11166e11176. otwiera się w nowej karcie
  31. C.J. Weschler, Changes in indoor pollutants since the 1950s, Atmos. Environ. 43 (2009) 153e169. otwiera się w nowej karcie
  32. J. Gunschera, S. Mentese, T. Salthammer, J.R. Andersen, Impact of building materials on indoor formaldehyde levels: effect of ceiling tiles, mineral fibre insulation and gypsum board, Build. Environ. 64 (2013) 138e145. otwiera się w nowej karcie
  33. T. Salthammer, M. Bahadir, Occurrence, dynamics and reactions of organic pollutants in the indoor environment, Clean 37 (2009) 417e435. otwiera się w nowej karcie
  34. G. Poulhet, S. Dusanter, S. Crunaire, N. Locoge, P. Kaluzny, P. Coddeville, Recent developments of passive samplers for measuring material emission rates: toward simple tools to help improving indoor air quality, Build. Envi- ron. 93 (2015) 106e114. otwiera się w nowej karcie
  35. M. Mar c, B. Zabiegała, J. Namie snik, Miniaturized passive emission chambers for in situ measurement of emissions of volatile organic compounds, Crit. Rev. Anal. Chem. 43 (2013) 55e61.
  36. M. Mar c, B. Zabiegała, J. Namie snik, Testing and sampling devices for moni- toring volatile and semi-volatile organic compounds in indoor air, Trends Anal. Chem. 32 (2012) 76e86.
  37. M.R. Ras, F. Borrull, R.M. Marc e, Sampling and preconcentration techniques for determination of volatile organic compounds in air samples, Trends Anal. Chem. 28 (2009) 347e361. otwiera się w nowej karcie
  38. S. Kr ol, B. Zabiegała, J. Namie snik, Monitoring VOCs in atmospheric air II. Sample collection and preparation, Trends Anal. Chem. 29 (2010) 1101e1112.
  39. E. Woolfenden, Sorbent-based sampling methods for volatile and semi- volatile organic compounds in air. Part 2. Sorbent selection and other as- pects of optimizing air monitoring methods, J. Chromatogr. A 1217 (2010) 2685e2694. otwiera się w nowej karcie
  40. M. Mar c, J. Namie snik, B. Zabiegała, Active sampling of air, in: M. de la Guardia, S. Armenta (Editors), Comprehensive Analytical Chemistry vol. 73, Elsevier B.V., Amsterdam, 2016, pp. 167e201. The Quality of Air.
  41. T. Salthammer, S. Mentese, R. Marutzkyet, Formaldehyde in the indoor environment, Chem. Rev. 110 (2010) 2536e2572. otwiera się w nowej karcie
  42. Z.L. Que, F.B. Wang, L.F. Ma, T. Furuno, Effect of loading ratio, conditioning time and air exchange rate on the formaldehyde emission from wood-based board using large chamber and desiccator method, Compos. Part B 47 (2013) 278e282. otwiera się w nowej karcie
  43. T. Salthammer, S. Mentese, Comparison of analytical techniques for the determination of aldehydes in test chambers, Chemosphere 73 (2008) 1351e1356. otwiera się w nowej karcie
  44. T. Schripp, B. Nachtwey, J. Toelke, T. Salthammer, E. Uhde, M. Wensing, M. Bahadir, A microscale device for measuring emissions from materials for indoor use, Anal. Bioanal. Chem. 387 (2007) 1907e1919. otwiera się w nowej karcie
  45. W. Yan, Y. Zhang, X. Wang, Simulation of VOC emissions from building ma- terials by using the state-space method, Build. Environ. 44 (2009) 471e478. otwiera się w nowej karcie
  46. K.W. Kim, S. Kim, H.J. Kim, J.C. Park, Formaldehyde and TVOC emission be- haviors according to finishing treatment with surface materials using 20 L chamber and FLEC, J. Hazard. Mater 177 (2010) 90e94. otwiera się w nowej karcie
  47. M. Mar c, J. Namie snik, B. Zabiegała, The home-made in situ passive flux sampler for the measurement of monoterpene emission flux: preliminary studies, Anal. Bioanal. Chem. 407 (2015) 6879e6884.
  48. H. Plaisance, A. Blondel, V. Desauziers, P. Mocho, Characteristics of formal- dehyde emissions from indoor materials assessed by a method using passive flux sampler measurements, Build. Environ. 73 (2014) 249e255. otwiera się w nowej karcie
  49. M. Mar c, J. Namie snik, B. Zabiegała, The miniaturised emission chamber sys- tem and home-made passive flux sampler studies of monoaromatic hydro- carbons emissions from selected commercially-available floor coverings, Build. Environ. 123 (2017) 1e13.
  50. S.S. Cox, Z. Liu, J.C. Little, C. Howard-Reed, S.J. Nabinger, A. Persily, Diffusion controlled reference material for VOC emissions testing: proof of concept, Indoor Air 20 (2010) 424e433. otwiera się w nowej karcie
  51. C. Howard-Reed, Z. Liu, J. Benning, S.S. Cox, D. Samarov, D. Leber, A.T. Hodgson, S. Mason, D. Won, J.C. Little, Diffusion-controlled reference material for volatile organic compound emissions testing: pilot inter- laboratory study, Build. Environ. 46 (2011) 1504e1511. otwiera się w nowej karcie
  52. W. Wei, S. Greer, C. Howard-Reed, A. Persily, Y. Zhang, VOC emissions from a LIFE reference: small chamber tests and factorial studies, Build. Environ. 57 (2012) 282e289. otwiera się w nowej karcie
  53. W. Wei, Y. Zhang, J. Xiong, M. Li, A standard reference for chamber testing of material VOC emissions: design principle and performance, Atmos. Environ. 47 (2012) 381e388. otwiera się w nowej karcie
  54. M. Richter, B. Mull, W. Horn, D. Br€ odner, N. M€ olders, M. Renner, Reproducibly emitting reference material on thermoplastic polyurethane basis for quality assurance/quality control of emission test chamber measurements, Build. Environ. 122 (2017) 230e236. otwiera się w nowej karcie
Politechnika Gdańska

wyświetlono 28 razy

Publikacje, które mogą cię zainteresować

Meta Tagi