Solubility of dapsone in deep eutectic solvents: Experimental analysis, molecular insights and machine learning predictions - Publikacja - MOST Wiedzy

Wyszukiwarka

Solubility of dapsone in deep eutectic solvents: Experimental analysis, molecular insights and machine learning predictions

Abstrakt

Background. Dapsone (DAP) is an anti-inflammatory and antimicrobial active pharmaceutical ingredient used to treat, e.g., AIDS-related diseases. However, low solubility is a feature hampering its efficient use.

Objectives. First, deep eutectic solvents (DES) were used as solubilizing agents for DAP as an alternative to traditional solvents. Second, intermolecular interactions in the systems were described and quantified. Finally, the solubility prediction model, previously created using the machine learning protocol, was extended and improved using new data obtained for eutectic systems.

Material and methods. New DES were created by blending choline chloride (ChCl) with 6 selected polyols. The solubility of DAP in these solvents was measured spectrophotometrically. The impact of water dilution on the solubility curve was investigated. Experimental research was enriched with theoretical interpretations of intermolecular interactions, identifying the most probable pairs in the systems. Dapsone self-association and its ability to interact with components of the analyzed systems were considered. Thermodynamic characteristics of pairs were utilized as molecular descriptors in the machine learning process, predicting solubility in both traditional organic solvents and the newly designed DES.

Results. The newly formulated solvents demonstrated significantly higher efficiency compared to traditional organic solvents, and a small addition of water increased solubility, indicating its role as a co-solvent. The interpretation of the mechanism of DAP solubility highlighted the competitive nature of self-association and pair formation. Thermodynamic parameters characterizing affinity were instrumental in developing an efficient model for theoretical screening across diverse solvent classes. The study emphasized the necessity of retraining models when introducing new experimental data, as exemplified by enriching the model with data from DES.

Conclusions. The research showcased the efficacy of developing new DES for enhancing solubility and creating environmentally and pharmaceutically viable systems, using DAP as an example. Molecular interactions proved valuable in understanding solubility mechanisms and formulating predictive models through machine learning processes.

Cytowania

  • 5

    CrossRef

  • 0

    Web of Science

  • 5

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 14 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
Publikacja w czasopiśmie
Opublikowano w:
Polimery w Medycynie nr 54, wydanie 1, strony 15 - 25,
ISSN: 0370-0747
Rok wydania:
2024
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.17219/pim/177235
Weryfikacja:
Brak weryfikacji

wyświetlono 58 razy

Publikacje, które mogą cię zainteresować

Meta Tagi