Status report on high temperature fuel cells in Poland – Recent advances and achievements - Publikacja - MOST Wiedzy

Wyszukiwarka

Status report on high temperature fuel cells in Poland – Recent advances and achievements

Abstrakt

The paper presents recent advances in Poland in the field of high temperature fuel cells. The achievements in the materials development, manufacturing of advanced cells, new fabrication techniques, modified electrodes and electrolytes and applications are presented. The work of the Polish teams active in the field of solid oxide fuel cells (SOFC) and molten carbonate fuel cell (MCFC) is presented and discussed. The review is oriented towards presenting key achievements in the technology at the scale from microstructure up to a complete power system based on electrochemical fuel oxidation. National efforts are covering wide range of aspects both in the fundamental research and the applied research. The review present the areas of (i) novel materials for SOFC including ZrO2-based electrolytes, CeO2-based electrolytes, Bi2O3 based electrolytes and proton conducting electrolytes, (ii) cathode materials including thermal shock resistant composite cathode material and silver-containing composites, (iii) anode materials, (iv) metallic interconnects for SOFC, (v) novel fabrication techniques, (vi) pilot scale SOFC, including electrolyte supported SOFC (ES-SOFC) and anode supported SOFC (AS-SOFC), (vii) metallic supported SOFC (MS-SOFC), (viii) direct carbon SOFC (DC-SOFC), (ix) selected application of SOFC, (x) advances in MCFC and their applications, (xi) advances in numerical methods for simulation and optimization of electrochemical systems.

Cytowania

  • 3 3

    CrossRef

  • 3 3

    Web of Science

  • 3 6

    Scopus

Autorzy (42)

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY nr 42, wydanie 7, strony 366 - 403,
ISSN: 0360-3199
Język:
angielski
Rok wydania:
2017
Opis bibliograficzny:
Molenda J., Kupecki J., Baron R., Belsznowski M., Brus G., Brylewski T., Bucko M., Chmielowiec J., Cwieka K., Gazda M., Gil A., Jasiński P., Jaworski Z., Karczewski J., Kawalec M., Kluczowski R., Krauz M., Krok F., Lukasik B., Małys M., Mazur A., Mielewczyk-Gryń A., Milewski J., Molin S., Mordalski G., Mosiałek M., Motyliński K., Naumovich E., Nowak P., Paściak G., Pianko-Oprych P., Pomykalska D., Rękas M., Sciazko A., Swierczek K., Szmyd J., Wachowski S., Wejrzanowski T., Wrobel W., Zagórski K., Zajac W., Zurawska A.: Status report on high temperature fuel cells in Poland – Recent advances and achievements// INTERNATIONAL JOURNAL OF HYDROGEN ENERGY. -Vol. 42, iss. 7 (2017), s.366-403
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.ijhydene.2016.12.087
Bibliografia: test
  1. Dollard WJ. Solid oxide fuel cell developments at Westinghouse. J Power Sources 1992;37(1e2):133e9. otwiera się w nowej karcie
  2. Raymond GA. Status of tubular SOFC field unit demonstrations. J Power Sources 2000;86(1e2):134e9.
  3. Isenberg AO, Zymboly GE. Apparatus and method for depositing coating onto porous substrate. United States patent 06/684,438 (US4609562 A). 1986 Sep 2/1986 Dec 20. otwiera się w nowej karcie
  4. Singhal SC. Solid oxide fuel cells for stationary, mobile, and military applications. Solid State Ionics 2002;152e153:405e10. otwiera się w nowej karcie
  5. Elcogen: Technical data. http://www.elcogen.com/en/sofc- single-cells/technical-data [Accessed 7 November 2016]. otwiera się w nowej karcie
  6. Huang K, Hou PY, Goodenough JB. Characterization of iron- based alloy interconnects for reduced temperature solid oxide fuel cells. Solid State Ionics 2000;129:237e50. otwiera się w nowej karcie
  7. Fontana S, Amendola R, Chevalier S, Piccardo P, Caboche G, Viviani M, et al. Metallic interconnects for SOFC: characterisation of corrosion resistance and conductivity evaluation at operating temperature of differently coated alloys. J Power Sources 2007;171:652e62. otwiera się w nowej karcie
  8. Brylewski T, Maruyama T, Nanko M, Przybylski K. TG measurements of the oxidation kinetics of Fe-Cr alloy with regard to its application as a separator in SOFC. J Therm Anal Calorim 1999;55(2):681e90. otwiera się w nowej karcie
  9. Shaigan N, Qu W, Ivey DG, Chen W. A review of recent progress in coatings, surface modifications and alloy. J Power Sources 2010;195:1529e42. otwiera się w nowej karcie
  10. Tucker MC, Cheng L, DeJonghe KC. Selection of cathode contact materials for solid oxide fuel cells. J Power Sources 2011;196:8313e22. otwiera się w nowej karcie
  11. Kilner JA, Burriel M. Materials for intermediate-temperature solid-oxide fuel cells. Annu Rev Mater Res 2014;44:365e93. otwiera się w nowej karcie
  12. Niewolak L, Wessel E, Singheiser L, Quadakkers WJ. Potential suitability of ferritic and austenitic steels as interconnect materials for solid oxide fuel cells operating at 600 C. J Power Sources 2010;195:7600e8. otwiera się w nowej karcie
  13. Yamamoto O, Arachi Y, Sakai H, Takeda Y, Imanishi N, Mizutani Y, et al. Zirconia based oxide ion conductors for solid oxide fuel cells. Ionics 1998;4:403e8. otwiera się w nowej karcie
  14. Badwal SPS. Zirconia-based solid electrolytes: microstructure, stability and ionic conductivity. Solid State Ionics 1992;52:23e32. otwiera się w nowej karcie
  15. Kharton VV, Marques FMB, Atkinson A. Transport properties of solid oxide electrolyte ceramics: a brief review. Solid State Ionics 2004;174:135e49. otwiera się w nowej karcie
  16. Kilner DA. Fast anion transport in solids. Solid State Ionics 1983;8:201e7. otwiera się w nowej karcie
  17. Hui SR, Roller J, Yick S, Zhang X, Deces-Petit C, Xie Y, et al. A brief review of the ionic conductivity enhancement for selected oxide electrolytes. J Power Sources 2007;172:493e502. otwiera się w nowej karcie
  18. Bucko M. Przewodnictwo jonowe w dwutlenku cyrkonu stabilizowanym tlenkami itru i lantanu. Ceramika/ Ceramics 2003;80:523e8. otwiera się w nowej karcie
  19. Bucko M. Ionic conductivity of CaO-Y 2 O 3 -ZrO 2 materials with constant oxygen vacancy concentration. J Eur Ceram Soc 2004;24:1305e8. otwiera się w nowej karcie
  20. Bucko M. Some structural aspects of ionic conductivity of yttria and calcia stabilised zirconia. Mat Sci Pol 2006;24:39e44.
  21. Pomykalska D, Bucko M, Rekas M. Electrical conductivity of MnO x -Y 2 O 3 -ZrO 2 solid solutions. Solid State Ionics 2010;181:48e52. otwiera się w nowej karcie
  22. Chen M, Hallstedt B, Gauckler LJ. Thermodynamic modeling of phase equilibria in the MneYeZreO system. Solid State Ionics 2005;176:1457e64. otwiera się w nowej karcie
  23. Backhaus-Ricoult M. Interface chemistry in LSMeYSZ composite SOFC cathodes. Solid State Ionics 2006;177(19e25):2195e200. otwiera się w nowej karcie
  24. Liu YL, Hagen A, Barfod R, Chen M, Wang HJ, Poulsen FW, et al. Microstructural studies on degradation of interface between LSMeYSZ cathode and YSZ electrolyte in SOFCs. Solid State Ionics 2009;180(23e25):1298e304. otwiera się w nowej karcie
  25. Zajac W, Molenda J. Properties of doped ceria solid electrolytes in reducing atmospheres. Solid State Ionics 2011;192:163e7. otwiera się w nowej karcie
  26. Zajac W, Suescun L, Swierczek K, Molenda J. Structural and electrical properties of grain boundaries in Ce 0.85 Gd 0.15 O 1.925 solid electrolyte modified by addition of transition metal ions. J Power Sources 2009;194:2e9. otwiera się w nowej karcie
  27. Zajac W, Molenda J. Electrical conductivity of doubly doped ceria. Solid State Ionics 2008;179:154e8. otwiera się w nowej karcie
  28. Zajac W, Swierczek K, Molenda J. Thermochemical compatibility between selected (La,Sr)(Co,Fe,Ni)O 3 cathodes and rare earth doped ceria electrolytes. J Power Sources 2007;173:675e80. otwiera się w nowej karcie
  29. Shuk P, Wiemhofer HD, Guth U, Gopel W, Greenblatt M. Oxide ion conducting solid electrolytes based on Bi 2 O 3 . Solid State Ionics 1996;89:179e96. otwiera się w nowej karcie
  30. Wachsman ED, Lee KT. Lowering the temperature of solid oxide fuel cells. Science 2011;334:935e9. otwiera się w nowej karcie
  31. Harwig HA, Gerards AG. J Solid State Chem 1978;26:265e74. otwiera się w nowej karcie
  32. Abrahams I, Krok F. Defect chemistry of the BIMEVOXes. J Mater Chem 2002;12:3351e62. otwiera się w nowej karcie
  33. Leszczynska M, Liu X, Wrobel W, Malys M, Krynski M, Norberg ST, et al. Thermal variation of structure and electrical conductivity in Bi 4 YbO 7.5 . Chem Mater 2013;25:326e36. otwiera się w nowej karcie
  34. Leszczynska M, Borowska-Centkowska A, Malys M, Dygas JR, Krok F, Wrobel W, et al. The double rare-earth substituted bismuth oxide system Bi 3 Y 1Àx Yb x O 6 . Solid State Ionics 2015;269:37e43. otwiera się w nowej karcie
  35. Leszczynska M, Holdynski M, Krok F, Abrahams I, Liu X, Wrobel W. Structural and electrical properties of Bi 3 Nb 1Àx Er x O 7ex . Solid State Ionics 2010;181:796e811. otwiera się w nowej karcie
  36. Krynski M, Wrobel W, Mohn CE, Dygas JR, Malys M, Krok F, et al. Trapping of oxide ions in d-Bi 3 YO 6 . Solid State Ionics 2014;264:49e53. otwiera się w nowej karcie
  37. Krynski M, Wrobel W, Dygas JR, Malys M, Krok F, Abrahams I. An ab initio study of oxide ion dynamics in type-II Bi 3 NbO 7 . J Mater Chem A 2015;3:21882e90. otwiera się w nowej karcie
  38. Malys M, Dygas JR, Holdynski M, Borowska-Centkowska A, Wrobel W, Marzantowicz M. Ionic and electronic conductivity in a Bi 2 O 3 -based material. Solid State Ionics 2012;225:493e7. otwiera się w nowej karcie
  39. Malys M, Holdynski M, Krok F, Wrobel W, Dygas JR, Pirovano C, et al. Investigation of transport numbers in yttrium doped bismuth niobates. J Power Sources 2009;194:16e9. otwiera się w nowej karcie
  40. Pasciak G, Mielcarek W. Thick film NO 2 sensor- microsystem. Technol J 1996;3(1):28e30. otwiera się w nowej karcie
  41. Pasciak G, Proci ow K, Mielcarek W, G ornicka B, Mazurek B. Solid electrolytes for gas sensors and fuel cells applications. J Eur Ceram Soc 2001;21:1867e70. otwiera się w nowej karcie
  42. Chmielowiec J. Opracowanie niskotemperaturowych, tlenkowych przewodnik ow superjonowych do zastosowania w ogniwach paliwowych typu IT-SOFC [Doctoral dissertation]. 2008. Wroclaw.
  43. Pasciak G, Chmielowiec J, Bujlo B. New ceramic superionic materials for IT-SOFC applications. Mat Sci 2005;23:209e19.
  44. Pasciak G, Chmielowiec J. Conductivity of La-and Pr-doped Bi 4 V 2 O 11 . Mat Sci Forum 2006;514:392. otwiera się w nowej karcie
  45. Chmielowiec J, Pasciak G, Bujlo P. Ionic conductivity and thermodynamic stability of La-doped BIMEVOX. J Alloys Compd 2008;451:676e8. otwiera się w nowej karcie
  46. Pasciak G, Chmielowiec J, Chan SH. Thermal and structural study of BIVOX undoped and doped with La in various atmosphere toward applications in IT-SOFC. Ceram Intern 2014;40(7):8969e74. otwiera się w nowej karcie
  47. Zajac W, Hanc E. Strontium-substituted Ba(Ce,Zr)O 3Àd oxides for proton conducting membranes. Fun Mater Lett 2014;7:1440014. otwiera się w nowej karcie
  48. Zajac W, Rusinek D, Zheng K, Molenda J. Applicability of Gd- doped BaZrO 3 , SrZrO 3 , BaCeO 3 and SrCeO 3 proton conducting perovskites as electrolytes for solid oxide fuel cells. Cent Eur J Chem 2013;11:471e84. otwiera się w nowej karcie
  49. Zajac W, Hanc E, Gorzkowska-Sobas A, Swierczek K, Molenda J. Nd-doped Ba(Ce,Zr)O 3Àd proton conductors for application in conversion of CO 2 into liquid fuels. Solid State Ionics 2012;225:297e303. otwiera się w nowej karcie
  50. Holtappels P, Stimming U. Handb. Fuel Cells. John Wiley & Sons Ltd; 2010. otwiera się w nowej karcie
  51. Gdula-Kasica K, Mielewczyk-Gryn A, Molin S, Jasinski P, Krupa A, Kusz B, et al. Optimization of microstructure and properties of acceptor-doped barium cerate. Solid State Ionics 2012:245e9. otwiera się w nowej karcie
  52. Haugsrud R, Norby T. Proton conduction in rare-earth ortho-niobates and ortho-tantalates. Nat Mater 2006;5:193e6. otwiera się w nowej karcie
  53. Mather GC, Fisher CAJ, Islam MS. Defects, dopants, and protons in LaNbO 4 . Chem Mater 2010;22:5912. otwiera się w nowej karcie
  54. Mokkelbost T, Andersen Ø, Strøm RA, Wiik K, Grande T, Einarsrud MA. High temperature proton conducting LaNbO 4 -based materials. J Am Ceram Soc 2007;90:3395e400. otwiera się w nowej karcie
  55. Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 2011;44:1272. otwiera się w nowej karcie
  56. Mielewczyk-Gry n A, Gdula K, Molin S, Jasinski P, Kusz B, Gazda M. Structure and electrical properties of ceramic proton conductors obtained with molten-salt and solid- state synthesis methods. J Non Cryst Solids 2010:1976e9. otwiera się w nowej karcie
  57. Gazda M, Mielewczyk-Gryn A, Gdula-Kasica K, Wachowski S, Nanosci J. Proton conducting ceramic powder synthesis by a low temperature method. Nanotechnol 2015;15:3626. otwiera się w nowej karcie
  58. Kolincio K, Gdula K, Mielewczyk A, Izdebski T, Gazda M. Molten salt synthesis of conducting and superconducting ceramics. Acta Phys Pol A 2010;118:326. otwiera się w nowej karcie
  59. Mielewczyk-Gryn A, Wachowski S, Zagorski K, Jasinski P, Gazda M. Characterization of magnesium doped lanthanum orthoniobate synthesized by molten salt route. Ceram Int 2015;41(6):7847e52. otwiera się w nowej karcie
  60. Mielewczyk-Gryn A, Gdula K, Lendze T, Kusz B, Gazda M. Document nano-and microcrystals of doped niobates. Cryst Res Tech 2010;45:1225e8. otwiera się w nowej karcie
  61. Mielewczyk-Gryn A, Gdula-Kasica K, Kusz B, Gazda M. Document High temperature monoclinic-to-tetragonal phase transition in magnesium doped lanthanum ortho- niobate. Ceram Int 2013;39:4239e44. otwiera się w nowej karcie
  62. Mielewczyk-Gryn A, Lendze T, Gdula-Kasica K, Jasinski P, Krupa A, Kusz B, et al. Characterization of CaTi 0.9 Fe 0.1 O 3 / La 0.98 Mg 0.02 NbO 4 composite. Open Phys 2013;11:213e8. otwiera się w nowej karcie
  63. Wachowski S, Mielewczyk-Gryn A, Gazda M. Effect of isovalent substitution on microstructure and phase transition of LaNb 1Àx M x O 4 (M¼Sb, v or Ta; X¼0.05-0.3). J Solid State Chem 2014;219:201. otwiera się w nowej karcie
  64. Mielewczyk-Gryn A, Wachowski S, Lilova KI, Guo X, Gazda M, Navrotsky A. Document influence of antimony substitution on spontaneous strain and thermodynamic stability of lanthanum orthoniobate. Ceram Int 2015;41:2128e33. otwiera się w nowej karcie
  65. Swierczek K, Marzec J, Pałubiak D, Zają c W, Molenda J. LFN and LSCFN perovskites e structure and transport properties. Solid State Ionics 2006;177(19e25):1811e7. otwiera się w nowej karcie
  66. Molenda J, Swierczek K, Zajac W. Functional materials for the IT-SOFC. J Power Sources 2007;173(2):657e70. otwiera się w nowej karcie
  67. Swierczek K, Gozu M. Structural and electrical properties of selected La 1Àx Sr x Co 0.2 Fe 0.8 O 3 and La 0.6 Sr 0.4 Co 0.2 Fe 0.6 Ni 0.2 O 3 perovskite type oxides. J Power Sources 2007;173(2):695e9.
  68. Swierczek K. Thermoanalysis, nonstoichiometry and thermal expansion of La 0.4 Sr 0.6 Co 0.2 Fe 0.8 O 3Àd , La 0.2 Sr 0.8 Co 0.2 Fe 0.8 O 3Àd , La 0.9 Sr 0.1 Co 1/3 Fe 1/3 Ni 1/3 O 3Àd and La 0.6 Sr 0.4 Co 0.2 Fe 0.6 Ni 0.2 O 3Àd perovskites. Solid State Ionics 2008;179(1e6):126e30. otwiera się w nowej karcie
  69. Swierczek K. Electrolyte-supported IT-SOFC with LSCF - SCFN composite cathode. Solid State Ionics 2011;192(1):486e90. otwiera się w nowej karcie
  70. Swierczek K. Physico-chemical properties of Ln 0.5 A 0.5 Co 0.5 Fe 0.5 O 3Àd (Ln: La, Sm; A: Sr, Ba) cathode materials and their performance in electrolyte-supported intermediate temperature solid oxide fuel cell. J Power Sources 2011;196(17):7110e6. otwiera się w nowej karcie
  71. Gedziorowski B, Swierczek K, Molenda J. La 1Àx Ba x Co 0.2 Fe 0.8 O 3Àd perovskites for application in intermediate temperature SOFCs. Solid State Ionics 2012;225:437e42. otwiera się w nowej karcie
  72. Kulka A, Hu Y, Dezanneau G, Molenda J. Investigation of GdBaCo 2Àx Fe x O 5.5Àd as a cathode materials for intermediate temperature solid oxide fuel cells. Fun Mater Lett 2011;4:157e60. otwiera się w nowej karcie
  73. Tatko M, Mosiałek M, Kę dra A, Biela nska E, Ruggiero- Mikołajczyk M, Nowak P. Thermal shock resistant composite cathode material Sm 0.5 Sr 0.5 CoO 3Àd - La 0.6 Sr 0.4 FeO 3Àd for solid oxide fuel cells. J Solid State Electrochem 2016;20(1):143e51. otwiera się w nowej karcie
  74. Mosiałek M, Dudek M, Michna A, Tatko M, Kedra A, Zimowska M. Composite cathode materials Ag- Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3 for solid oxide fuel cells. J Solid State Electrochem 2014;18:3011e21. otwiera się w nowej karcie
  75. Tatko M, Mosiałek M, Dudek M, Nowak P, Kedra A, Biela nska E. Composite cathode materials Sm 0.5 Sr 0.5 CoO 3 - La 0.6 Sr 0.4 FeO 3 for solid oxide fuel cells. Solid State Ionics 2015;271:103e8. otwiera się w nowej karcie
  76. Zheng K, Swierczek K. Physicochemical properties of rock salt-type ordered Sr 2 MMoO 6 (M ¼ Mg, Mn, Fe, Co, Ni). J Eur Ceram Soc 2014;34:4273e84. otwiera się w nowej karcie
  77. Zheng K, Swierczek K, Bratek J, Klimkowicz A. Cation- ordered perovskite-type anode and cathode materials for solid oxide fuel cells. Solid State Ionics 2014;262:354e8. otwiera się w nowej karcie
  78. Zheng K, Swierczek K, Zajac W, Klimkowicz A. Rock salt ordered-type double perovskite anode materials for solid oxide fuel cells. Solid State Ionics 2014;257:9e16. otwiera się w nowej karcie
  79. Quadakkers WJ, Piron-Abellan A, Shemet V, Singheiser L. Document metallic interconnectors for solid oxide fuel cells e a review. Mater High Temp 2003;20:115e27. otwiera się w nowej karcie
  80. Yang Z, Weil KS, Paxton DM, Stevenson JW. Document selection and evaluation of heat-resistant alloys for SOFC interconnect applications. J Electrochem Soc 2003;150:A1188e201. otwiera się w nowej karcie
  81. Fergus JW. Metallic interconnects for solid oxide fuel cells. Mater Sci Eng A 2005;397:271e83. otwiera się w nowej karcie
  82. Brylewski T, Nanko M, Maruyama T, Przybylski K. Document Application of Fe-16Cr ferritic alloy to interconnector for a solid oxide fuel cell. Solid State Ionics 2001;143:131e50. otwiera się w nowej karcie
  83. Kadowaki T, Shiomitsu T, Matsuda E, Nakagawa H, Tsuneizumi H, Maruyama T. Applicability of heat resisting alloys to the separator of planar type solid oxide fuel cell. Solid State Ionics 1993;67:65e9. otwiera się w nowej karcie
  84. Montero X, Jord an N, Pir on-Abell an J, Tietz F, St€ over D, Cassir M, et al. Spinel and perovskite protection layers between crofer22APU and La 0.8 Sr 0.2 FeO 3 cathode materials for SOFC interconnects. J Electrochem Soc 2009;156:B188e96. otwiera się w nowej karcie
  85. Zhu WZ, Deevi SC. Development of interconnect materials for solid oxide fuel cells. Mater Sci Eng A 2003;348:227e43. otwiera się w nowej karcie
  86. Hilpert K, Das D, Miller M, Peck DH, Weib R. Select this article chromium vapor species over solid oxide fuel cell interconnect materials and their potential for degradation processes. J Electrochem Soc 1996;143:3642e7. otwiera się w nowej karcie
  87. Kurokawa H, Jacobson CP, DeJonghe LC, Visco S. Chromium vaporization of bare and of coated ironechromium alloys at 1073 K. Solid State Ionics 2007;178:287e96. otwiera się w nowej karcie
  88. Brylewski T, Przybylski K. Perovskite and spinel functional coatings for SOFC metallic interconnects. Ann Chimie Sci Materiaux 2008;33:75. otwiera się w nowej karcie
  89. Cabouro G, Caboche G, Chevalier S, Piccardo P. Opportunity of metallic interconnects for ITSOFC: reactivity and electrical property. J Power Sources 2006;156:39. otwiera się w nowej karcie
  90. Qu W, Li H, Ivey DG. Solegel coatings to reduce oxide growth in interconnects used for solid oxide fuel cells. J Power Sources 2004;138:162e73. otwiera się w nowej karcie
  91. Shaigan N, Qu W, Ivey DG, Chen W. A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects. J Power Sources 2010;195:1529e42. otwiera się w nowej karcie
  92. Yang ZG, Xia GG, Maupin GD, Stevenson JW. Evaluation of perovskite overlay coatings on ferritic stainless steels for SOFC interconnect applications. J Electrochem Soc 2006;153:A1852e8. otwiera się w nowej karcie
  93. Larring Y, Norby T. Spinel and perovskite functional layers between Plansee metallic interconnect (Cr-5 wt % Fe-1 wt % Y 2 O 3 ) and ceramic (La 0.85 Sr 0.15 ) 0.91 MnO 3 cathode materials for solid oxide fuel cells. J Electrochem Soc 2000;147:3251e6. otwiera się w nowej karcie
  94. Brylewski T, Dabek J, Przybylski K, Morgiel J, Rekas M. Screen-printed (La,Sr)CrO 3 coatings on ferritic stainless steel interconnects for solid oxide fuel cells using nanopowders prepared by means of ultrasonic spray pyrolysis. J Power Sources 2012;208:86e95. otwiera się w nowej karcie
  95. Yang Z, Xia G, Simner SP, Stevenson JW. Ferritic stainless steel SOFC interconnects with thermally grown (Mn,Co) 3O 4 spinel protection layers. J Electrochem Soc 2005;152:A1896e901. otwiera się w nowej karcie
  96. Yang ZG, Xia GG, Stevenson JW. Mn 1.5 Co 1.5 O 4 spinel protection layers on ferritic stainless steels for SOFC interconnect applications. Electrochem Solid-State Lett 2005;8:A168e70. otwiera się w nowej karcie
  97. Gannon P, Deibert M, White P, Smith R, Chen H, Priyantha W, et al. Advanced PVD protective coatings for SOFC interconnects. Int J Hydrog Energy 2008;33:3991e4000. otwiera się w nowej karcie
  98. Przybylski K, Brylewski T. Document interface reactions between conductive ceramic layers and Fe-Cr steel substrates in SOFC operating conditions. Mater Trans 2011;52:345e51. otwiera się w nowej karcie
  99. Brylewski T, Przybylski K, Morgiel J. Document microstructure of Fe-25Cr/(La, Ca)CrO 3 composite interconnector in solid oxide fuel cell operating conditions. Mater Chem Phys 2003;81:434e7. otwiera się w nowej karcie
  100. Przybylski K, Brylewski T, Morgiel J. Document interfacial interactions between some la-based perovskite thick films and ferritlc steel substrate with regard to the operating conditions of SOFC. Mater Sci Forum 2004;461e464:1099e106. otwiera się w nowej karcie
  101. Kruk A, Stygar M, Brylewski T. Mn-Co spinel protective- conductive coating on AL453 ferritic stainless steel for IT- SOFC interconnect applications. J Solid State Electrochem 2013;17:993e1003. otwiera się w nowej karcie
  102. Brylewski T, Gil A, Rakowska A, Chevalier S, Adamczyk A, Dą bek J, et al. Improving the physicochemical properties of Fe-25Cr ferritic steel for SOFC interconnects via Y- implantation and Y 2 O 3 -deposition. Oxid Met 2013;80:83e111. otwiera się w nowej karcie
  103. Meulenberg WA, Gil A, Wessel E, Buchkremer HP, St€ over D. Document corrosion and interdiffusion in a Ni/Fe-Cr-Al couple used for the anode side of multi-layered interconnector for SOFC applications. Oxid Met 2002;57:1e12. otwiera się w nowej karcie
  104. Petrovsky V, Gazda M, Anderson HU, Molin S, Jasinski P. Applications of spin coating of polymer precursor and slurry suspensions for solid oxide fuel cell fabrication. J Power Sources 2009;194:10e5.
  105. Szymczewska D, Karczewski J, Chrzan A, Jasi nski P. Three electrode configuration measurements of electrolyte- diffusion barrier-cathode interface. J Ceram Soc Jpn 2015;123:268e73. otwiera się w nowej karcie
  106. Chrzan A, Karczewski J, Gazda M, Szymczewska D, Jasinski P. Investigation of thin perovskite layers between cathode and doped ceria used as buffer layer in solid oxide fuel cells. J Solid State Electrochem 2015;19(6):1807e15. otwiera się w nowej karcie
  107. Karczewski J, Bochentyn B, Molin S, Gazda M, Jasinski P, Kusz B. Solid oxide fuel cells with Ni-infiltrated perovskite anode. Solid State Ionics 2012;221:11e4. otwiera się w nowej karcie
  108. Molin S, Lewandowska-Iwaniak W, Kusz B, Gazda M, Jasinski P. Structural and electrical properties of Sr(Ti, Fe) O 3Àd materials for SOFC cathodes. J Electroceramics 2012;28:80e7. otwiera się w nowej karcie
  109. Szymczewska D, Karczewski J, Bochentyn B, Chrzan A, Gazda M, Jasi nski P. Investigation of catalytic layers on anode for solid oxide fuel cells operating with synthetic biogas. Solid State Ionics 2015;271:109e15. otwiera się w nowej karcie
  110. Golec T, Antunes R, Jewulski J, Miller M, Kluczowski R, Krauz M, et al. The Institute of Power Engineering activity in the solid oxide fuel cell technology. J Fuel Cell Sci Technol 2010;7:011003-1e011003-5. otwiera się w nowej karcie
  111. Krauz M. Opracowanie technologii wytwarzania stałotlenkowych ogniw paliwowych. Bull Pol Assoc Hydr Fuel Cells 2010;5:95e6.
  112. Antunes R, Golec T, Miller M, Krauz M, Kluczowski R, Krzastek K. Geometrical and microstructure optimization of double-layer LSM/LSM-YSZ cathodes by electrochemical impedance spectroscopy. J Fuel Cell Sci Technol 2010;7:011011-1e011011-6. otwiera się w nowej karcie
  113. Kluczowski R, Krauz M, Kawalec M, Ouweltjes JP. Near net shape manufacturing of planar anode supported solid oxide fuel cells by using ceramic injection molding and screen printing. J Power Sources 2014;268:752e7. otwiera się w nowej karcie
  114. Molin S, Kusz B, Gazda M, Jasinski P. Protective coatings for stainless steel for SOFC applications. J Solid State Electrochem 2008;13:1695e700. otwiera się w nowej karcie
  115. Jasinski P, Lewandowska-Iwaniak W, Molin S. Metal supported solid oxide fuel cells e selected aspects. IOP Conf Ser Mater Sci Eng 2011;18:132004. otwiera się w nowej karcie
  116. Molin S, Tolczyk M, Gazda M, Jasinski P. Stainless steel/ yttria stabilized zirconia composite supported solid oxide fuel cell. J Fuel Cell Sci Technol 2011;8:051019. otwiera się w nowej karcie
  117. Molin S, Gazda M, Kusz B, Jasinski P. Evaluation of 316L porous stainless steel for SOFC support. J Eur Ceram Soc 2009;29:757e62. otwiera się w nowej karcie
  118. Molin S, Gazda M, Jasinski P. High temperature oxidation of porous alloys for solid oxide fuel cell applications. Solid State Ionics 2010;181:1214e20. otwiera się w nowej karcie
  119. Karczewski J, Dunst KJ, Jasinski P, Molin S. High temperature corrosion and corrosion protection of porous Ni22Cr alloys. Surf Coat Technol 2015;261:385e90. otwiera się w nowej karcie
  120. Szymczewska D, Molin S, Chen M, Hendriksen PV, Jasinski P. Ceria based protective coatings for steel interconnects prepared by spray pyrolysis. Procedia Eng 2014;98:93e100. otwiera się w nowej karcie
  121. Giddey S, Badwal SPS, Kulkarni A, Munnings C. A comprehensive review of direct carbon fuel cell technology. Prog Energy Combust Sci 2012;38:360e99. otwiera się w nowej karcie
  122. Dudek M, Tomczyk P. Composite fuels for direct carbon fuel cell. Catal Today 2011;176:388e92. otwiera się w nowej karcie
  123. Dudek M, Tomczyk P, Socha R, Hamaguchi M. Use of ash- free "hyper-coal" as a fuel for a direct carbon fuel cell with solid oxide electrolyte. Int J Hydrog Energy 2014;39:12386e94. otwiera się w nowej karcie
  124. Dudek M, Tomczyk P, Socha R, Skrzypkiewicz M, Jewulski J. Biomass fuels for direct carbon fuel cell with solid oxide electrolyte. Int J Electrochem Sci 2013;8:3229e53. otwiera się w nowej karcie
  125. Dudek M. On the utilization of coal samples in direct carbon solid oxide fuel cell technology. Solid State Ionics 2015;271:121e7. otwiera się w nowej karcie
  126. Dudek M, Tomczyk P, Lis B, Mordarski G. Direct carbon fuel cells e selected domestic activities. Energy Policy J 2014;17:81e92. otwiera się w nowej karcie
  127. Skrzypkiewicz M, Jewulski J, Lubarska-Radziejewska I. The effect of Fe 2 O 3 catalyst on direct carbon fuel cell performance. Int J Hydrog Energy 2015;40:13090e8. otwiera się w nowej karcie
  128. Jewulski J, Skrzypkiewicz M, Struzik M, Lubarska- Radziejewska I. Lignite as a fuel for direct carbon fuel cell system. Int J Hydrog Energy 2014;39:21778e85. otwiera się w nowej karcie
  129. Antunes R, Skrzypkiewicz M. Chronoamperometric investigations of electro-oxidation of lignite in direct carbon bed solid oxide fuel cell. Int J Hydrog Energy 2015;40:4357e69. otwiera się w nowej karcie
  130. Jewulski J, Błesznowski M, Stę pie n M. Flow distribution analysis of the solid oxide fuel cell stack under electric load conditions. In: Proceeding of Lucerne Fuel Cell Forum; 2009. Switzerland; B0705.
  131. (A1): SOFC stack with corrugated separator plate. European Patent EP2338195. otwiera się w nowej karcie
  132. Golec T, Kupecki J, Wierzbicki M, Skrzypkiewicz M, Stepien M, Rychlik M, et al. Zagadnienia modelowania, konstrukcji i bada n eksploatacyjnych układu mikro- kogeneracyjnego z ceramicznymi ogniwami paliwowymi (SOFC). 2015. ISBN: 978-83-7789-394-4.
  133. Kupecki J, Jewulski J, Badyda K. Comparative study of biogas and DME fed micro-CHP system with solid oxide fuel cell. otwiera się w nowej karcie
  134. Appl Mech Mater 2013;267:53e6. otwiera się w nowej karcie
  135. Kupecki J. Off-design analysis of a micro-CHP unit with solid oxide fuel cells fed by DME. Int J Hydrog Energy 2015;40(35):12009e22. otwiera się w nowej karcie
  136. Kupecki J, Skrzypkiewicz M, Wierzbicki M, Stepien M. Analysis of a micro-CHP unit with in-series SOFC stacks fed by biogas. Energy Procedia 2015;75:2021e6. otwiera się w nowej karcie
  137. Fu CJ, Chan SH, Ge XM, Liu QL, Pasciak G. A promising NiFe bimetallic anode for intermediate-temperature SOFC based on Gd-doped ceria electrolyte. Int J Hydrog Energy 2011;36:13727e34. otwiera się w nowej karcie
  138. Liu QL, Chan SH, Pasciak G. Fabrication and characterization of large-size electrolyte/anode bilayer structures for low-temperature solid oxide fuel cell stack based on gadolina-doped ceria electrolyte. Electrochem Comm 2009;11:871e4. otwiera się w nowej karcie
  139. Głowacki P, Kawalec M. Aircraft emission during various flight phases. Combust Engines 2015;162(3):229e40. otwiera się w nowej karcie
  140. Advisory Council for Aeronautical Research in Europe (ACARE). European Aeronautics: a vision for 2020. 2001. otwiera się w nowej karcie
  141. Advisory Council for Aviation Research and Innovation in Europe (ACARE), Strategic Research & Innovation Agenda (SRIA); 2012;1. otwiera się w nowej karcie
  142. Krawczyk JM, Mazur AM, Sasin T, Stokłosa AW. Fuel cells as alternative power for unmanned aircraft systems e current situation and development trends. Trans Inst Aviat 2014;4(237):49e62. otwiera się w nowej karcie
  143. Spencer KM. Investigation of potential fuel cell use in aircraft, Institute for Defense Analyses. IDA Document D- 5043; Log: H 13-001404. 2013.
  144. Dokiya M. SOFC system and technology. Solid State Ionics 2002;152e153:383e92. otwiera się w nowej karcie
  145. Palsson J, Selimovic A, Sjunnesson L. Combined solid oxide fuel cell and gas turbine systems for efficient power and heat generation. J Power Sources 2000;86:442e8. otwiera się w nowej karcie
  146. Waters D, Vannoy S, Cadou Ch. Hybrid turbine-solid oxide fuel cells for aircraft propulsion and power. In: University of Maryland, Department of Aerospace Engineering; Electric & Hybrid Aerospace Technology Symposium; 2015. otwiera się w nowej karcie
  147. Lisbona P, Corradetti A, Bove R, Lunghi P. Analysis of a solid oxide fuel cell system for combined heat and power applications under non-nominal conditions. Electrochim Acta 2007;53:1920e30. otwiera się w nowej karcie
  148. Bove R, Ubertini S. Modeling solid oxide fuel cell operation: approaches, techniques and results. J Power Sources 2006;159:543e59. otwiera się w nowej karcie
  149. Baharanchi AA. Multidisciplinary modeling, control, and optimization of a solid oxide fuel cell/gas turbine hybrid power system [Thesis]. University of Miami; 2009.
  150. Larminie J, Dicks A. Fuel cell systems explained. New York: John Wiley & Sons Ltd; 2000. otwiera się w nowej karcie
  151. Perullo CA, Trawick D, Clifton W, Tai JCM, Mavris DN. Development of a suite of hybrid electric propulsion modeling elements using NPSS. In: Turbo Expo 2014, Turbine Technical Conference and Exposition; 2014. Dusseldorf. otwiera się w nowej karcie
  152. Brus G. Experimental and numerical studies on chemically reacting gas flow in the porous structure of a solid oxide fuel cells internal fuel reformer. Int J Hydrog Energy 2012;37:17225e34. otwiera się w nowej karcie
  153. Brus G, Komatsu Y, Kimijima S, Szmyd JS. An analysis of biogas reforming process on Ni/YSZ and Ni/SDC catalysts. Int J Therm 2012;15.
  154. Brus G, Nowak R, Szmyd JS, Komatsu Y. An experimental and theoretical approach for the carbon deposition problem during steam reforming of model biogas. J Theor Appl Mech 2015;53(2):273e84. otwiera się w nowej karcie
  155. Sciazko A, Komatsu Y, Brus G, Kimijima S, Szmyd JS. A novel approach to the experimental study on methane/ steam reforming kinetics using the Orthogonal Least Squares method. J Power Sources 2014;262:245e54. otwiera się w nowej karcie
  156. Sciazko A, Komatsu Y, Brus G, Kimijima S. A novel approach to improve the mathematical modelling of the internal reforming process for solid oxide fuel cells using the orthogonal least squares method. Int J Hydrog Energy 2014;39:16372e89. otwiera się w nowej karcie
  157. Brus G, Szmyd JS. Numerical modelling of radiative heat transfer in an internal indirect reforming-type SOFC. J Power Sources 2008;181:8e16. otwiera się w nowej karcie
  158. Mozdzierz M, Brus G, Sciazko A, Komatsu Y, Kimijima S, Szmyd JS. Towards a thermal optimization of a methane/ steam reforming reactor. Flow Turbul Combust 2016:1e19. otwiera się w nowej karcie
  159. Nishino T, Szmyd JS. Numerical analysis of a cell-based indirect internal reforming tubular SOFC operating with biogas. J Fuel Cell Sci Technol 2010;7:051004-1e051004-8. otwiera się w nowej karcie
  160. Szmyd JS, Komatsu Y, Brus G, Ghigliazza F, Kimijima S, Sciazko A. The effect of applied control strategy on the current-voltage correlation of a solid oxide fuel cell stack during dynamic operation. Arch Therm 2014;35:129e43. otwiera się w nowej karcie
  161. Komatsu Y, Brus G, Kimijima S, Szmyd JS. The effect of overpotentials on the transient response of the 300W SOFC cell stack voltage. Appl Energy 2014;115:352e9. otwiera się w nowej karcie
  162. Komatsu Y, Kimijima S, Szmyd JS. Performance analysis for the part-load operation of a solid oxide fuel cell-micro gas turbine hybrid system. Energy 2010;35:982e8. otwiera się w nowej karcie
  163. Komatsu Y, Kimijima S, Szmyd JS. Numerical analysis on dynamic behavior of solid oxide fuel cell with power output control scheme. J Power Sources 2013;223:232e45. otwiera się w nowej karcie
  164. Brus G, Miyawaki K, Iwai H, Saito M, Yoshida H. Solid State Ionics 2014;265:13e21. otwiera się w nowej karcie
  165. Brus G, Miyoshi K, Iwai H, Saito M, Yoshida H. Change of an anode's microstructure morphology during the fuel starvation of an anode-supported solid oxide fuel cell. Int J Hydrog Energy 2015;40:6927e34. otwiera się w nowej karcie
  166. Brus G, Iwai H, Sciazko A, Saito M, Yoshida H, Szmyd JS. Local evolution of anode microstructure morphology in a solid oxide fuel cell after long-term stack operation. J Power Sources 2015;288:199e205. otwiera się w nowej karcie
  167. Brus G, Iwai H, Otani Y, Saito M, Yoshida H. Local evolution of triple phase boundary in solid oxide fuel cell stack after long-term operation. Fuel Cells 2015;288:199e205. otwiera się w nowej karcie
  168. Pianko-Oprych P, Kasilova E, Jaworski Z. CFD analysis of heat transfer in a microtubular solid oxide fuel cell stack. Chem Proc Eng 2014;35(3):293e304. otwiera się w nowej karcie
  169. Pianko-Oprych P, Zinko T, Jaworski Z. Modeling of thermal stresses in a microtubular solid oxide fuel cell stack. J Power Sources 2015;300:10e23. otwiera się w nowej karcie
  170. Pianko-Oprych P, Zinko T, Jaworski Z. Numerical analysis of thermal stresses in a new design of microtubular stack. Cent Eur J Chem 2015;13(1):1045e62. otwiera się w nowej karcie
  171. Pianko-Oprych P, Zinko T, Jaworski Z. Simulation of thermal stresses for new designs of microtubular solid oxide fuel cell stack. Int J Hydrog Energy 2015;40(42):14584e95. otwiera się w nowej karcie
  172. Zakrzewska B, Pianko-Oprych P, Jaworski Z. Multiscale modeling of solid oxide fuel cell systems. Chem Ing Tech 2015;86(7):1029e43. otwiera się w nowej karcie
  173. Kupecki J, Jewulski J, Milewski J. Multi-level mathematical modeling of solid oxide fuel cells [in] clean energy for better environment. Rijeka: Intech; 2012. p. 53e85. ISBN: 978-953- 51-0822-1. otwiera się w nowej karcie
  174. Kupecki J. Modelling of physical, chemical and material properties of solid oxide fuel cells. J Chem 2015;1:414950. otwiera się w nowej karcie
  175. Kupecki J, Jewulski J, Motylinski K. Parametric evaluation of a micro-CHP unit with solid oxide fuel cells integrated with oxygen transport membranes. Int J Hydrog Energy 2015;40(35):11633e40. otwiera się w nowej karcie
  176. Kupecki J, Milewski J, Szczesniak A, Bernat R, Motylinski K. Dynamic numerical analysis of cross-, co-, and counter-current flow configurations of a 1 kW-class solid oxide fuel cell stack. Int J Hydrog Energy 2015;40(45):15834e44. otwiera się w nowej karcie
  177. Motylinski K, Kupecki J. Modeling the dynamic operation of a small fin plate heat exchanger e parametric analysis. Arch Therm 2015;36:85e103. otwiera się w nowej karcie
  178. Wolowicz M, Kupecki J, Wawryniuk K, Milewski J, Motylinski K. Analysis of nodalization effects on the prediction error of generalized finite element method used for dynamic modeling of hot water storage tank. Arch Therm 2015;36:123e38. otwiera się w nowej karcie
  179. Kupecki J, Milewski J, Jewulski J. Investigation of SOFC material properties for plant-level modelling. Cent Eur J Chem 2013;11(5):664e71. otwiera się w nowej karcie
  180. Kupecki J, Milewski J, Badyda K, Jewulski J. Evaluation of sensitivity of a micro-CHP unit performance to SOFC parameters. ECS Trans 2013;51(1):107e16. otwiera się w nowej karcie
  181. Kupecki J, Motylinski K, Ferraro M, Sergi F, Zanon N. Use of NaNiCl battery for mitigation of SOFC stack cycling in base- load telecommunication power system e a preliminary evaluation. J Power Technol 2016;96(1):63e71.
  182. Milewski J, Discepoli G, Desideri U. Modeling the performance of MCFC for various fuel and oxidant compositions. Int J Hydrog Energy 2014;39(22):11713e21. otwiera się w nowej karcie
  183. Milewski J, Biczel P, Kłos M. Triple-layer control system for molten carbonate fuel cell-gas turbine hybrid system. J Fuel Cell Sci Technol 2015;12(4), 041005. otwiera się w nowej karcie
  184. Milewski J, Wołowicz M, Miller A, Bernat R. A reduced order model of molten carbonate fuel cell: a proposal. Int J Hydrog Energy 2013;38(26):11565e75. otwiera się w nowej karcie
  185. Milewski J, Swiercz T, Badyda K, Miller A, Dmowski A, Biczel P. The control strategy for a molten carbonate fuel cell hybrid system. Int J Hydrog Energy 2010;35(7):2997e3000. otwiera się w nowej karcie
  186. Skibinski J, Cwieka K, Kowalkowski T, Wysocki B, Wejrzanowski T, Kurzydlowski KJ. The influence of pore size variation on the pressure drop in open-cell foams. Mater Des 2015;87:650e5. otwiera się w nowej karcie
  187. Wejrzanowski T, Skibinski J, Szumbarski J, Kurzydlowski KJ. Structure of foams modeled by Laguerre-Voronoi tessellations. Comp Mat Sci 2013;67:216e21. otwiera się w nowej karcie
  188. FCH-JU MAWP 2014e2020. http://www.fch.europa.eu/sites/ default/files/documents/FCH2%20JU%20-%20Multi% 20Annual%20Work%20Plan%20-%20MAWP_en_0.pdf [Accessed 12 November 2016]. otwiera się w nowej karcie
  189. International Energy Agency: electricity and heat for 2014. http://www.iea.org/statistics/statisticssearch/report/? year¼2014&country¼POLAND&product¼ElectricityandHeat [Accessed 15 November 2016]. otwiera się w nowej karcie
  190. FuelCellToday: the fuel cell industry review 2013. http:// fuelcelltoday.com/media/1889744/fct_review_2013.pdf [Accessed 15 November 2016]. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 82 razy

Publikacje, które mogą cię zainteresować

Meta Tagi