Super-resolved Thermal Imagery for High-accuracy Facial Areas Detection and Analysis - Publikacja - MOST Wiedzy

Wyszukiwarka

Super-resolved Thermal Imagery for High-accuracy Facial Areas Detection and Analysis

Abstrakt

In this study, we evaluate various Convolutional Neural Networks based Super-Resolution (SR) models to improve facial areas detection in thermal images. In particular, we analyze the influence of selected spatiotemporal properties of thermal image sequences on detection accuracy. For this purpose, a thermal face database was acquired for 40 volunteers. Contrary to most of existing thermal databases of faces, we publish our dataset in a raw, original format (14-bit depth) to preserve all important details. In our experiments, we utilize two metrics usually used for image enhancement evaluation: Peak-Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Metric (SSIM). In addition, we present how to design a SR network with a widened receptive field to mitigate the problem of contextual information being spread over larger image regions due to the heat flow in thermal images. Finally, we determine whether there is a relation between achieved PSNR and accuracy of facial areas detection that can be analyzed for vital signs extraction (e.g. nostril region). The performed evaluation showed that PSNR can be improved even by 60\% if full bit depth resolution data is used instead of 8 bits. Also, we showed that the application of image enhancement solution is necessary for low resolution images to achieve a satisfactory accuracy of object detection.

Cytowania

  • 1 9

    CrossRef

  • 0

    Web of Science

  • 2 0

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 119 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE nr 87,
ISSN: 0952-1976
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Kwaśniewska A., Rumiński J., Szankin M., Kaczmarek M.: Super-resolved Thermal Imagery for High-accuracy Facial Areas Detection and Analysis// ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE -Vol. 87, (2020), s.103263-
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.engappai.2019.103263
Weryfikacja:
Politechnika Gdańska

wyświetlono 176 razy

Publikacje, które mogą cię zainteresować

Meta Tagi