The Processing Procedure for the Interpretation of Microseismic Signal Acquired from a Surface Array During Hydraulic Fracturing in Pomerania Region in Poland - Publikacja - MOST Wiedzy

Wyszukiwarka

The Processing Procedure for the Interpretation of Microseismic Signal Acquired from a Surface Array During Hydraulic Fracturing in Pomerania Region in Poland

Abstrakt

Hydraulic fracturing is a procedure of injecting high pressure fluid into the wellbore in order to break shell rock and facilitate gas flow. It is a very costly procedure and, if not conducted properly, it may lead to environmental pollution. To avoid costs associated with pumping fluid outside the perspective (gas rich) zone and improve one’s knowledge about the reservoir rock, microseismic monitoring can be applied. The method involves recording seismic waves, which are induced by fractured rock, by an array of sensors distributed in a wellbore nearby or on the surface. Combining geological and geophysical knowledge of region with signal processing computer techniques, one can locate induced fractures allowing for real-time process monitoring and rock properties evaluation. In Poland perspective shell formation is located very deep, i.e. about 4km from the surface. Additionally overlaying rock formations strongly attenuate and disperse seismic waves. Therefore, signal recorded by a surface array of sensors is very weak. Signal from a seismic event can be orders of magnitude lower than noise. To recover signal connected with fractured rock one needs to use numerical methods utilizing coherence of signals. An example of such a computer procedure is presented in this paper.

Cytowania

  • 1

    CrossRef

  • 0

    Web of Science

  • 2

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 66 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Aktywność konferencyjna
Typ:
materiały konferencyjne indeksowane w Web of Science
Tytuł wydania:
International Conference on Computational Science, ICCS 2017 strony 1722 - 1730
ISSN:
1877-0509
Język:
angielski
Rok wydania:
2017
Opis bibliograficzny:
Antoszkiewicz M., Kmieć M., Szewczuk P., Szkodo M., Jankowski R..: The Processing Procedure for the Interpretation of Microseismic Signal Acquired from a Surface Array During Hydraulic Fracturing in Pomerania Region in Poland, W: International Conference on Computational Science, ICCS 2017, 2017, ,.
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.procs.2017.05.262
Bibliografia: test
  1. Allen, R. V. (1978). Automatic earthquake recognition and timing from single traces. Bulletin of the Seismological Society of America, 68(5), 1521-1532.
  2. Anikiev, D., Valenta, J., Staněk, F., & Eisner, L. (2014). Joint location and source mechanism inversion of microseismic events: Benchmarking on seismicity induced by hydraulic fracturing. otwiera się w nowej karcie
  3. Geophysical Journal International, 198(1), 249-258. https://doi.org/10.1093/gji/ggu126 otwiera się w nowej karcie
  4. Arthur, A. J. D., Consulting, A. L. L., Bohm, B., Coughlin, B. J., Layne, M., & Ph, D. (2008). Evaluating the Environmental Implications of Hydraulic Fracturing in Shale Gas Reservoirs, (March), 1-21. otwiera się w nowej karcie
  5. Baer, M., & Kradolfer, U. (1987). An automatic phase picker for local and teleseismic events. Bulletin of the Seismological Society of America, 77(4), 1437-1445.
  6. Baker, T., Granat, R., & Clayton, R. W. (2005). Real-time earthquake location using Kirchhoff reconstruction. Bulletin of the Seismological Society of America, 95(2), 699-707. https://doi.org/10.1785/0120040123 otwiera się w nowej karcie
  7. Calvez, J. H. L., Craven, M. E., Klem, R. C., Baihly, J. D., Bennett, L. A., & Brook, K. (2007). Real- Time Microseismic Monitoring of Hydraulic Fracture Treatment: A Tool To Improve Completion and Reservoir Management. SPE Hydraulic Fracturing Technology Conference, (SPE 106159), 7. https://doi.org/10.2118/106159-MS otwiera się w nowej karcie
  8. Coppens, F. (1985). First Arrival Picking on Common???Offset Trace Collections for Automatic Estimation of Static Corrections. Geophysical Prospecting, 33(8), 1212-1231. https://doi.org/10.1111/j.1365-2478.1985.tb01360.x otwiera się w nowej karcie
  9. Eisner, L., Hulsey, B. J., Duncan, P., Jurick, D., Werner, H., & Keller, W. (2010). Comparison of surface and borehole locations of induced seismicity. Geophysical Prospecting, 58(5), 809-820. https://doi.org/10.1111/j.1365-2478.2010.00867.x otwiera się w nowej karcie
  10. Falborski, T., & Jankowski, R. (2013). Polymeric Bearings -A New Base Isolation System to Reduce Structural Damage during Earthquakes. Key Engineering Materials, 569, 143-150. otwiera się w nowej karcie
  11. Frohlich, C. (1979). An efficient method for joint hypocenter determination for large groups of earthquakes. Computers and Geosciences, 5(3-4), 387-389. https://doi.org/10.1016/0098- 3004(79)90034-7 otwiera się w nowej karcie
  12. Geiger, L. (1912). Probability method for the determination of earthquake epicenters from the arrival time only. Bull. St. Louis Univ, 8(1), 56-71.
  13. Gharti, H. N., Oye, V., Roth, M., & Kühn, D. (2010). Automated microearthquake location using envelope stacking and robust global optimization. Geophysics, 75(4), MA27. https://doi.org/10.1190/1.3432784 otwiera się w nowej karcie
  14. Gray, S. H., & May, W. P. (1994). Kirchhoff migration using eikonal equation traveltimes. Geophysics, 59(5), 810-817. https://doi.org/10.1190/1.1443639 otwiera się w nowej karcie
  15. Grigoli, F., Cesca, S., Vassallo, M., & Dahm, T. (2013). Automated Seismic Event Location by Travel- Time Stacking: An Application to Mining Induced Seismicity. Seismological Research Letters, 84(4), 666-677. https://doi.org/10.1785/0220120191 otwiera się w nowej karcie
  16. J. Gajewski, D., Anikiev, D., Kashtan, B., Tessmer, E., & Vanelle, C. (2007). Source Location by Diffraction Stacking, (June), 5-7. https://doi.org/10.3997/2214-4609.201401879 otwiera się w nowej karcie
  17. Jankowski, R. (2015). Pounding Between Superstructure Segments in Multi-Supported Elevated Bridge with Three-Span Continuous Deck Under 3D Non-Uniform Earthquake Excitation. Journal of Earthquake and Tsunami, 9(4), 1550012. https://doi.org/10.1142/S1793431115500128 otwiera się w nowej karcie
  18. Jankowski, R., & Mahmoud, S. (2015). Earthquake-Induced Structural Pounding. Springer. otwiera się w nowej karcie
  19. Jankowski, R., & Mahmoud, S. (2016). Linking of adjacent three-storey buildings for mitigation of structural pounding during earthquakes. Bulletin of Earthquake Engineering, 14(11), 3075-3097. otwiera się w nowej karcie
  20. Kao, H., & Shan, S. J. (2004). The Source-Scanning Algorithm: Mapping the distribution of seismic sources in time and space. Geophysical Journal International, 157(2), 589-594. https://doi.org/10.1111/j.1365-246X.2004.02276.x otwiera się w nowej karcie
  21. King, G. E. (2012). Hydraulic Fracturing 101: What Every Representative, Environmentalist, Regulator, Reporter, Investor, University Researcher, Neighbor and Engineer Should Know About Estimating Frac Risk and Improving Frac Performance in Unconventional Gas and Oil Wells. S. Proceedings of the SPE Hydraulic Fracturing Technology Conference, 80 pp. https://doi.org/10.2118/152596-MS otwiera się w nowej karcie
  22. Lomax, A., Virieux, J., & Volant, P. (2000). Probabilistic earthquake location in 3D and layered models. Advances in Seismic Event. otwiera się w nowej karcie
  23. Montgomery, C. T., Smith, M. B., Technologies, N. S. I., Fracturing, H., Cooke, C. E., Dollarhide, F. E., … Poollen, H. K. Van. (2010). Hydraulic Fracturing -History of an enduring Technology. Journal of Petroleum Technology, (December), 26-41. https://doi.org/10.2118/1210-0026-JPT Naderpour, H., Barros, R. C., Khatami, S. M., & Jankowski, R. (2016). Numerical study on pounding between two adjacent buildings under earthquake excitation. Shock and Vibration, 2016. otwiera się w nowej karcie
  24. Neidell, N. S., & Taner, M. T. (1971). Semblance and other coherency measures for multichannel data. Geophysics, 36(3), 482-497. otwiera się w nowej karcie
  25. Osborn, S. G., Vengosh, A., Warner, N. R., & Jackson, R. B. (2011). Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. Proceedings of the National Academy of Sciences of the United States of America, 108(20), 8172-6. https://doi.org/10.1073/pnas.1100682108 otwiera się w nowej karcie
  26. Rodriguez, I. (2011). Automatic Time-picking of Microseismic Data Combining STA/LTA and the Stationary Discrete Wavelet Transform. CSPG CSEG CWLS Convention, Convention Abstracts, (1), 2-5.
  27. Sabbione, J. I., & Velis, D. (2010). Automatic first-breaks picking: New strategies and algorithms. Geophysics, 75(4), V67-V76. https://doi.org/10.1190/1.3463703 otwiera się w nowej karcie
  28. Waldhauser, F., & Ellsworth, W. L. (2000). A Double-difference Earthquake location algorithm: Method and application to the Northern Hayward Fault, California. Bulletin of the Seismological Society of America, 90(6), 1353-1368. https://doi.org/10.1785/0120000006 otwiera się w nowej karcie
  29. Zhebel, O., & Eisner, L. (2012). Simultaneous microseismic event localization and source mechanism determination . SEG Las Vegas 2012 Annual Meeting Simultaneous microseismic event localization and source mechanism determination . SEG Las Vegas 2012 Annual Meeting, 1-5. otwiera się w nowej karcie
  30. Zhebel, O., & Eisner, L. (2015). Simultaneous microseismic event localization and source mechanism determination. Geophysics, 80(1), KS1-KS9. https://doi.org/10.1190/geo2014-0055.1 otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 130 razy

Publikacje, które mogą cię zainteresować

Meta Tagi