Microseismic Monitoring of Hydraulic Fracturing - Data Interpretation Methodology With an Example from Pomerania - Publikacja - MOST Wiedzy

Wyszukiwarka

Microseismic Monitoring of Hydraulic Fracturing - Data Interpretation Methodology With an Example from Pomerania

Abstrakt

Microseismic monitoring is a method for localizing fractures induced by hydraulic fracturing in search for shell gas. The data is collected from an array of geophones deployed on the surface or underground. Ground vibrations are recorded and analysed for fracture location, magnitude and breakage mechanism. For successful microseismic monitoring one need a velocity model of underlying formations. The model is further tuned with signal from perforation shots of known location. Imaging of calibration events is done using software MicSeis developed by Seismik s.r.o. MicSeis utilizes diffraction stacking of waveforms from multiple stations and is intended to image microseismic events with low signal-to-noise ratio (SNR). Imaging means detection of events in time on the seismogram records (determination of arrivals and amplitudes at each receiver), location of the event hypocenters in subsurface, determination of their origin time, and characterization (or evaluation) of detected events. The reliability of detection is further enhanced by analysis of semblance of amplitudes of the detected events. The imaging of microseismic events in MicSeis is using a grid search over all possible origin times and expected set of potential source location points in the selected rock volume. Wave propagation times from grid nodes to the geophones are computed using input velocity model. The seismic moment tensors are automatically determined from the amplitudes gathered during the grid search procedure and are used to model polarities of events which then enhance constructive interference of the event amplitudes and reduce noise influence. Function characterizing a maximum stack per time sample is calculated over whole volume and it is analyzed using the STA/LTA algorithm with a predefined threshold. Additionally a semblance value is used to verify the event detection. Once the event is detected in time, location is determined through analysis of the 3D spatial image function.

Cytowania

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 59 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Aktywność konferencyjna
Typ:
publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
Tytuł wydania:
10th International Conference „Environmental Engineering“ strony 1 - 10
Język:
angielski
Rok wydania:
2017
Opis bibliograficzny:
Antoszkiewicz M., Kmieć M., Szewczuk P., Jankowski R., Szkodo M.: Microseismic Monitoring of Hydraulic Fracturing - Data Interpretation Methodology With an Example from Pomerania// 10th International Conference „Environmental Engineering“/ Wilno: , 2017, s.1-10
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3846/enviro.2017.001
Bibliografia: test
  1. Allen, R. V. 1978. Automatic earthquake recognition and timing from single traces, Bulletin of the Seismological Society of America 68(5): 1521-1532. Prieiga per internetą: http://www.bssaonline.org/content/68/5/1521.short
  2. Coppens, F. 1985. First Arrival Picking on Common-Offset trace collections for automatic estimation of static corrections, Antoszkiewicz, M.; Kmieć, M.; Szewczuk, P.; Szkodo, M.; Jankowski, R. 2017. Microseismic monitoring of hydraulic fracturing - data interpretation methodology with an example from Pomerania 7
  3. Geophysical Prospecting 33(8): 1212-1231. https://doi.org/10.1111/j.1365-2478.1985.tb01360.x otwiera się w nowej karcie
  4. Duncan, P. M.; Eisner L. 2010. Reservoir characterization using surface microseismic monitoring, Geophysics 75(5): 75A139. https://doi.org/10.1190/1.3467760 otwiera się w nowej karcie
  5. Eaton, D. W.; Akram, J.; St-onge, A.; Forouhideh, F. 2011. Determining microseismic event locations by semblance-weighted stacking, CSEG Annual Convention: 1-4.
  6. Falborski, T.; Jankowski, R. 2013. Polymeric bearings -a new base isolation system to reduce structural damage during earthquakes, Key Engineering Materials 569-570: 143-150. https://doi.org/10.4028/www.scientific.net/KEM.569-570.143 otwiera się w nowej karcie
  7. Gajewski, D. J.; Anikiev, D.; Kashtan, B.; Tessmer, E.; Vanelle, C. 2007. Source Location by Diffraction Stacking, in 69 th EAGE Conference and Exhibition Incorporating SPE EUROPEC 2007: 5-7. https://doi.org/10.3997/2214-4609.201401879 otwiera się w nowej karcie
  8. Jankowski, R. 2007. Theoretical and experimental assessment of parameters for the non-linear viscoelastic model of structural pounding, Journal of Theoretical and Applied Mechanics 45(4): 931-942. otwiera się w nowej karcie
  9. Jankowski, R. 2015. Pounding between superstructure segments in multi-supported elevated bridge with three-span continuous deck under 3D non-uniform earthquake excitation, Journal of Earthquake and Tsunami 9(4), 1550012. https://doi.org/10.1142/S1793431115500128 otwiera się w nowej karcie
  10. Jankowski, R.; Mahmoud, S. 2016. Linking of adjacent three-storey buildings for mitigation of structural pounding during earth- quakes, Bulletin of Earthquake Engineering 14(11): 3075-3097. https://doi.org/10.1007/s10518-016-9946-z otwiera się w nowej karcie
  11. Mayerhofer, M. J.; Lolon, E., Warpinski, N. R.; Cipolla, C. L.; Walser, D. W.; Rightmire, C. M. 2010. What is stimulated reservoir volume?, SPE Production & Operations 25(1): 16-18. https://doi.org/10.2118/119890-PA otwiera się w nowej karcie
  12. Naderpour, H.; Barros, R. C.; Khatami, S. M.; Jankowski, R. 2016. Numerical study on pounding between two adjacent buildings under earthquake excitation, Shock and Vibration 2016: article ID 1504783. https://doi.org/10.1155/2016/1504783 otwiera się w nowej karcie
  13. Phillips, W.; Rutledge, J. T.; House, L. S.; Fehler, M. C. 2002. Induced microearthquake patterns in hydrocarbon and geothermal reservoirs: six case studies, Pure and Applied Geophysics 159(1): 345-369. https://doi.org/10.1007/PL00001256 otwiera się w nowej karcie
  14. Sabbione, J. I.; Velis, D. 2010. Automatic first-breaks picking: New strategies and algorithms, Geophysics 75(4): V67-V76. https://doi.org/10.1190/1.3463703 otwiera się w nowej karcie
  15. Warpinski, N. R.; Branagan, P. T.; Peterson, R. E.; Wolhart, S. L.; Uhl, J. E. 1998. Mapping hydraulic fracture growth and geometry using microseismic events detected by a wireline retrievable accelerometer array, SPE Gas Technology Symposium: 335- 346. https://doi.org/10.2118/40014-MS otwiera się w nowej karcie
  16. Zhebel, O.; Eisner, L. 2015. Simultaneous microseismic event localization and source mechanism determination, Geophysics 80(1): KS1-KS9. https://doi.org/10.1190/geo2014-0055.1 otwiera się w nowej karcie
  17. Zhebel, O.; Eisner, L. 2012. Simultaneous microseismic event localization and source mechanism determination. SEG Technical Program Expanded Abstracts 2012: 1-5. https://doi.org/10.1190/segam2012-1033.1 otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 124 razy

Publikacje, które mogą cię zainteresować

Meta Tagi