Total Domination Versus Domination in Cubic Graphs - Publikacja - MOST Wiedzy

Wyszukiwarka

Total Domination Versus Domination in Cubic Graphs

Abstrakt

A dominating set in a graph G is a set S of vertices of G such that every vertex not in S has a neighbor in S. Further, if every vertex of G has a neighbor in S, then S is a total dominating set of G. The domination number,γ(G), and total domination number, γ_t(G), are the minimum cardinalities of a dominating set and total dominating set, respectively, in G. The upper domination number, \Gamma(G), and the upper total domination number, \Gamma_t(G), are the maximum cardinalities of a minimal dominating set and total dominating set, respectively, in G. It is known that γ_t(G)/γ (G)≤2 and \Gamma_t(G)/ \Gamma(G)≤2 for all graphs G with no isolated vertex. In this paper we characterize the connected cubic graphs G satisfying γ_t(G)/γ (G)=2, and we characterize the connected cubic graphs G satisfying \Gamma_t(G)/ \Gamma(G)=2.

Cytowania

0
CrossRef
0
Web of Science
0
Scopus

Joanna Cyman, Magda Dettlaff, Michael A. Henning, Magdalena Lemańska, Joanna Raczek. (2018). Total Domination Versus Domination in Cubic Graphs, 34(1), 261-276. https://doi.org/10.1007/s00373-017-1865-5

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
GRAPHS AND COMBINATORICS nr 34, strony 261 - 276,
ISSN: 0911-0119
Język:
angielski
Rok wydania:
2018
Opis bibliograficzny:
Cyman J., Dettlaff M., Henning M., Lemańska M., Raczek J.: Total Domination Versus Domination in Cubic Graphs// GRAPHS AND COMBINATORICS. -Vol. 34, nr. 1 (2018), s.261-276

wyświetlono 11 razy

Meta Tagi