Urchin-like TiO2 structures decorated with lanthanide-doped Bi2S3 quantum dots to boost hydrogen photogeneration performance - Publikacja - MOST Wiedzy

Wyszukiwarka

Urchin-like TiO2 structures decorated with lanthanide-doped Bi2S3 quantum dots to boost hydrogen photogeneration performance

Abstrakt

The formation of heterojunctions between wide- and narrow-bandgap photocatalysts is commonly employed to boost the efficiency of photocatalytic hydrogen generation. Herein, the photoactivity of urchin-like rutile particles is increased by decorating with pristine as well as Er- or Yb-doped Bi2S3 quantum dots (QDs) at varied QD loadings (1–20 wt%) and doping degrees (1–15 mol%), and the best hydrogen evolution performance is achieved at Er and Yb contents of 10 mol%. Specifically, a hydrogen productivity of 1576.7 μmol gcat −1 is achieved after 20-h irradiation for TiO2 decorated by 10 mol% Yb-doped Bi2S3 QDs. Theoretical calculations show that the introduction of defects into the Bi2S3 lattice through Er/Yb doping promotes the creation of new energy levels and facilitates the transport of photogenerated charges during photocatalysis.

Cytowania

  • 2 3

    CrossRef

  • 1 9

    Web of Science

  • 2 2

    Scopus

Autorzy (9)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 22 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
APPLIED CATALYSIS B-ENVIRONMENTAL nr 272,
ISSN: 0926-3373
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Miodynska M., Mikolajczyk A., Bajorowicz B., Zwara J., Klimczuk T., Lisowski W., Trykowski G., Pinto H., Zaleska-Medynska A.: Urchin-like TiO2 structures decorated with lanthanide-doped Bi2S3 quantum dots to boost hydrogen photogeneration performance// APPLIED CATALYSIS B-ENVIRONMENTAL -Vol. 272, (2020), s.118962-
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.apcatb.2020.118962
Bibliografia: test
  1. P. Zhang, T. Song, T. Wang, H. Zeng, Enhancement of hydrogen production of a Cu-TiO2 nanocomposite photocatalyst combined with broad spectrum absorption sensitizer Erythrosin B, RSC Adv. 7 (2017) 17873-17881, https://doi.org/10.1039/ C6RA27686E. otwiera się w nowej karcie
  2. A. Zaleska-Medynska, Metal Oxide-Based Photocatalysis: Fundamentals and Prospects for Application, Elsevier, 2018. otwiera się w nowej karcie
  3. J. Huo, L. Fang, Y. Lei, G. Zeng, H. Zeng, Facile preparation of yttrium and alu- minum co-doped ZnO via a sol-gel route for photocatalytic hydrogen production, J. Mater. Chem. A. 2 (2014) 11040-11044, https://doi.org/10.1039/C4TA02207F. otwiera się w nowej karcie
  4. H. Liu, K. Zhao, T. Wang, J. Deng, H. Zeng, Facile preparation of cerium (Ce) and antimony (Sb) codoped SnO2 for hydrogen production in lactic acid solution, Mater. Sci. Semicond. Process. 40 (2015) 670-675, https://doi.org/10.1016/j. mssp.2015.07.041. otwiera się w nowej karcie
  5. F. Raziq, M. Humayun, A. Ali, T. Wang, A. Khan, Q. Fu, W. Luo, H. Zeng, Z. Zheng, B. Khan, H. Shen, X. Zu, S. Li, L. Qiao, Synthesis of S-Doped porous g-C3N4 by using ionic liquids and subsequently coupled with Au-TiO2 for exceptional cocatalyst-free visible-light catalytic activities, Appl. Catal. B Environ. 237 (2018) 1082-1090, https://doi.org/10.1016/j.apcatb.2018.06.009. otwiera się w nowej karcie
  6. T. Song, P. Zhang, T. Wang, A. Ali, H. Zeng, Constructing a novel strategy for controllable synthesis of corrosion resistant Ti3+ self-doped titanium-silicon ma- terials with efficient hydrogen evolution activity from simulated seawater, Nanoscale 10 (2018) 2275-2284, https://doi.org/10.1039/C7NR07095K. otwiera się w nowej karcie
  7. B. Bajorowicz, A. Gołąbiewska, J. Nadolna, A. Malankowska, M.P. Kobylański, A. Zaleska-Medynska, Quantum dot-decorated semiconductor micro-and nano- particles: a review of their synthesis, characterization and application in photo- catalysis, Adv. Colloid Interface Sci. 256 (2018) 352-372, https://doi.org/10.1016/ j.cis.2018.02.003. otwiera się w nowej karcie
  8. J. Sowik, M. Miodyńska, B. Bajorowicz, A. Mikolajczyk, W. Lisowski, T. Klimczuk, D. Kaczor, A. Zaleska Medynska, A. Malankowska, Optical and photocatalytic properties of rare earth metal-modified ZnO quantum dots, Appl. Surf. Sci. 464 (2019) 651-663, https://doi.org/10.1016/j.apsusc.2018.09.104. otwiera się w nowej karcie
  9. M.C. Beard, A.G. Midgett, M.C. Hanna, J.M. Luther, B.K. Hughes, A.J. Nozik, Comparing multiple exciton generation in quantum dots to impact ionization in bulk semiconductors: implications for enhancement of solar energy conversion, Nano Lett. 10 (2010) 3019-3027, https://doi.org/10.1021/nl101490z. otwiera się w nowej karcie
  10. A.H. Reshak, Quantum dots in photocatalytic applications: efficiently enhancing visible light photocatalytic activity by integrating CdO quantum dots as sensitizers, Phys. Chem. Chem. Phys. 19 (2017) 24915-24927, https://doi.org/10.1039/ C7CP05312F. otwiera się w nowej karcie
  11. L. Ge, F. Zuo, J. Liu, Q. Ma, C. Wang, D. Sun, L. Bartels, P. Feng, Synthesis and efficient visible light photocatalytic hydrogen evolution of polymeric g-C3N4 cou- pled with CdS quantum dots, J. Phys. Chem. C. 116 (2012) 13708-13714, https:// doi.org/10.1021/jp3041692. otwiera się w nowej karcie
  12. C. Wang, R.L. Thompson, P. Ohodnicki, J. Baltrus, C. Matranga, Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 hetero- structured photocatalysts, J. Mater. Chem. 21 (2011) 13452-13457, https://doi. org/10.1039/C1JM12367J. otwiera się w nowej karcie
  13. G.-S. Li, D.-Q. Zhang, J.C. Yu, A new visible-light photocatalyst: CdS quantum dots embedded mesoporous TiO2, Environ. Sci. Technol. 43 (2009) 7079-7085, https:// doi.org/10.1021/es9011993. otwiera się w nowej karcie
  14. X. Wang, Z. Wang, M. Zhang, X. Jiang, Y. Wang, J. Lv, G. He, Z. Sun, Nanoheterostructure Engineering of CdS/PbS Quantum-Dot Co-Sensitized TiO 2 Nanorod Arrays for Enhanced Photoelectrochemical and Photocatalytic Properties, J. Electrochem. Soc. 164 (2017) H707-H713, https://doi.org/10.1149/2. 0291712jes. otwiera się w nowej karcie
  15. B. Bajorowicz, J. Nadolna, W. Lisowski, T. Klimczuk, A. Zaleska-Medynska, The effects of bifunctional linker and reflux time on the surface properties and photo- catalytic activity of CdTe quantum dots decorated KTaO 3 composite photo- catalysts, Appl. Catal. B Environ. 203 (2017) 452-464, https://doi.org/10.1016/j. apcatb.2016.10.027. otwiera się w nowej karcie
  16. S. Azimi, A. Nezamzadeh-Ejhieh, Enhanced activity of clinoptilolite-supported hy- bridized PbS-CdS semiconductors for the photocatalytic degradation of a mixture of tetracycline and cephalexin aqueous solution, J. Mol. Catal. A Chem. 408 (2015) 152-160, https://doi.org/10.1016/j.molcata.2015.07.017. otwiera się w nowej karcie
  17. Y. Bessekhouad, D. Robert, J.V. Weber, Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant, J. Photochem. Photobiol. A Chem. 163 (2004) 569-580, https://doi.org/10.1016/j. jphotochem.2004.02.006. otwiera się w nowej karcie
  18. J. Fu, B. Chang, Y. Tian, F. Xi, X. Dong, Novel C3N4-CdS composite photocatalysts with organic-inorganic heterojunctions: in situ synthesis, exceptional activity, high stability and photocatalytic mechanism, J. Mater. Chem. A. 1 (2013) 3083-3090, https://doi.org/10.1039/C2TA00672C. otwiera się w nowej karcie
  19. T. Lv, L. Pan, X. Liu, T. Lu, G. Zhu, Z. Sun, C.Q. Sun, One-step synthesis of CdS-TiO2-chemically reduced graphene oxide composites via microwave-assisted reaction for visible-light photocatalytic degradation of methyl orange, Catal. Sci. Technol. 2 (2012) 754-758, https://doi.org/10.1039/C2CY00452F. otwiera się w nowej karcie
  20. W.-C. OH, M. CHEN, K. CHO, C. KIM, Z. MENG, L. ZHU, Synthesis of Graphene- CdSe composite by a simple hydrothermal method and its photocatalytic de- gradation of organic dyes, Chinese J. Catal. 32 (2011) 1577-1583, https://doi.org/ 10.1016/S1872-2067(10)60264-1. otwiera się w nowej karcie
  21. S.W. Cao, Y.P. Yuan, J. Fang, M.M. Shahjamali, F.Y.C. Boey, J. Barber, S.C. Joachim Loo, C. Xue, In-situ growth of CdS quantum dots on g-C3N4 nanosheets for highly efficient photocatalytic hydrogen generation under visible light irradiation, Int. J. Hydrogen Energy 38 (2013) 1258-1266, https://doi.org/10.1016/j.ijhydene.2012. 10.116. otwiera się w nowej karcie
  22. R.M. Navarro, F. del Valle, J.L.G. Fierro, Photocatalytic hydrogen evolution from CdS-ZnO-CdO systems under visible light irradiation: Effect of thermal treatment and presence of Pt and Ru cocatalysts, Int. J. Hydrogen Energy 33 (2008) 4265-4273, https://doi.org/10.1016/j.ijhydene.2008.05.048. otwiera się w nowej karcie
  23. S.V. Kahane, R. Sasikala, B. Vishwanadh, V. Sudarsan, S. Mahamuni, CdO-CdS nanocomposites with enhanced photocatalytic activity for hydrogen generation from water, Int. J. Hydrogen Energy 38 (2013) 15012-15018, https://doi.org/10. 1016/j.ijhydene.2013.09.077. otwiera się w nowej karcie
  24. X. Wang, G. Liu, G.Q. Lu, H.-M. Cheng, Stable photocatalytic hydrogen evolution from water over ZnO-CdS core-shell nanorods, Int. J. Hydrogen Energy 35 (2010) 8199-8205, https://doi.org/10.1016/j.ijhydene.2009.12.091. otwiera się w nowej karcie
  25. L. Xu, W. Shi, J. Guan, Preparation of crystallized mesoporous CdS/Ta2O5 com- posite assisted by silica reinforcement for visible light photocatalytic hydrogen evolution, Catal. Commun. 25 (2012) 54-58, https://doi.org/10.1016/j.catcom. 2012.03.037. otwiera się w nowej karcie
  26. W. Cui, S. Ma, L. Liu, Y. Liang, PbS-sensitized K2Ti4O9 composite: preparation and photocatalytic properties for hydrogen evolution under visible light irradiation, Chem. Eng. J. 204-206 (2012) 1-7, https://doi.org/10.1016/j.cej.2012.07.075. otwiera się w nowej karcie
  27. M. Wang, J. Wang, S. Feng, P. Meng, Time-dependent toxicity of cadmium telluride quantum dots on liver and kidneys in mice: histopathological changes with elevated free cadmium ions and hydroxyl radicals, Int. J. Nanomedicine (2016) 2319-2328.
  28. R. Hardman, Review A Toxicologic Review of Quantum Dots: Toxicity Depends on Physicochemical and Environmental Factors, Environ. Health Perspect. 114 (2012) 165-172, https://doi.org/10.1289/ehp.8284. otwiera się w nowej karcie
  29. H. Zhang, H. Huang, H. Ming, H. Li, L. Zhang, Y. Liu, Z. Kang, Carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced photocatalytic activity and stability under visible light, J. Mater. Chem. 22 (2012) 10501-10506, https://doi. org/10.1039/C2JM30703K. otwiera się w nowej karcie
  30. H. Yu, Y. Zhao, C. Zhou, L. Shang, Y. Peng, Y. Cao, L.-Z. Wu, C.-H. Tung, T. Zhang, Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evo- lution, J. Mater. Chem. A. 2 (2014) 3344-3351, https://doi.org/10.1039/ C3TA14108J. otwiera się w nowej karcie
  31. H. Li, R. Liu, S. Lian, Y. Liu, H. Huang, Z. Kang, Near-infrared light controlled photocatalytic activity of carbon quantum dots for highly selective oxidation re- action, Nanoscale. 5 (2013) 3289-3297, https://doi.org/10.1039/C3NR00092C. otwiera się w nowej karcie
  32. X. Qian, D. Yue, Z. Tian, M. Reng, Y. Zhu, M. Kan, T. Zhang, Y. Zhao, Carbon quantum dots decorated Bi2WO6 nanocomposite with enhanced photocatalytic oxidation activity for VOCs, Appl. Catal. B Environ. 193 (2016) 16-21, https://doi. org/10.1016/j.apcatb.2016.04.009. otwiera się w nowej karcie
  33. D. Wang, L. Guo, Y. Zhen, L. Yue, G. Xue, F. Fu, AgBr quantum dots decorated mesoporous Bi2WO6 architectures with enhanced photocatalytic activities for methylene blue, J. Mater. Chem. A. 2 (2014) 11716-11727, https://doi.org/10. 1039/C4TA01444H. otwiera się w nowej karcie
  34. Q. Chen, R. Tong, X. Chen, Y. Xue, Z. Xie, Q. Kuang, L. Zheng, Ultrafine ZnO quantum dot-modified TiO2 composite photocatalysts: the role of the quantum size effect in heterojunction-enhanced photocatalytic hydrogen evolution, Catal. Sci. Technol. 8 (2018) 1296-1303, https://doi.org/10.1039/C7CY02310C. otwiera się w nowej karcie
  35. D. Qu, M. Zheng, P. Du, Y. Zhou, L. Zhang, D. Li, H. Tan, Z. Zhao, Z. Xie, Z. Sun, Highly luminescent S, N co-doped graphene quantum dots with broad visible ab- sorption bands for visible light photocatalysts, Nanoscale 5 (2013) 12272-12277, https://doi.org/10.1039/C3NR04402E. otwiera się w nowej karcie
  36. Y.-J. Yuan, S. Yang, P. Wang, Y. Yang, Z. Li, D. Chen, Z.-T. Yu, Z.-G. Zou, Bandgap- tunable black phosphorus quantum dots: visible-light-active photocatalysts, Chem. Commun. 54 (2018) 960-963, https://doi.org/10.1039/C7CC08211H. otwiera się w nowej karcie
  37. I. Zns, S. Yu, X. Fan, X. Wang, J. Li, Q. Zhang, A. Xia, L. Wu, Y. Zhou, G.R. Patzke, S. Wei, Ef fi cient photocatalytic hydrogen evolution with, Nat. Commun. (n.d.) 1-10. doi:10.1038/s41467-018-06294-y. otwiera się w nowej karcie
  38. J. Sun, L. Duan, Q. Wu, W. Yao, Synthesis of MoS2 quantum dots cocatalysts and their efficient photocatalytic performance for hydrogen evolution, Chem. Eng. J. 332 (2018) 449-455, https://doi.org/10.1016/j.cej.2017.09.026. otwiera się w nowej karcie
  39. Y.-J. Yuan, G. Fang, D. Chen, Y. Huang, L.-X. Yang, D.-P. Cao, J. Wang, Z.-T. Yu, Z.- G. Zou, High light harvesting efficiency CuInS2 quantum dots/TiO2/MoS2 photo- catalysts for enhanced visible light photocatalytic H2 production, Dalton Trans. 47 (2018) 5652-5659, https://doi.org/10.1039/C8DT00356D. otwiera się w nowej karcie
  40. T.-L. Li, C.-D. Cai, T.-F. Yeh, H. Teng, Capped CuInS2 quantum dots for H2 evo- lution from water under visible light illumination, J. Alloys. Compd. 550 (2013) 326-330, https://doi.org/10.1016/j.jallcom.2012.10.157. otwiera się w nowej karcie
  41. V. Ramasamy, V. Mohana, V. Rajendran, Characterization of Ca doped CeO2 quantum dots and their applications in photocatalytic degradation, OpenNano. 3 (2018) 38-47, https://doi.org/10.1016/j.onano.2018.04.002. otwiera się w nowej karcie
  42. R. Sumi, A.R. Warrier, C. Vijayan, Visible-light driven photocatalytic activity of β -indium sulfide (In 2 S 3) quantum dots embedded in Nafion matrix, Physica E: Low- dimensional Systems and Nanostructures 105103 (n.d.). doi:10.1088/0022-3727/ 47/10/105103. otwiera się w nowej karcie
  43. N.L. Reddy, S. Emin, V.D. Kumari, S. Muthukonda Venkatakrishnan, CuO quantum dots decorated TiO2 nanocomposite photocatalyst for stable hydrogen generation, Ind. Eng. Chem. Res. 57 (2018) 568-577, https://doi.org/10.1021/acs.iecr. 7b03785. otwiera się w nowej karcie
  44. M. Miodyńska, B. Bajorowicz, P. Mazierski, W. Lisowski, T. Klimczuk, M.J. Winiarski, A. Zaleska-Medynska, J. Nadolna, Preparation and photocatalytic properties of BaZrO3 and SrZrO3 modified with Cu2O/Bi2O3 quantum dots, Solid State Sci. 74 (2017) 13-23, https://doi.org/10.1016/j.solidstatesciences.2017.10. 003. otwiera się w nowej karcie
  45. X. Lin, X. Guo, W. Shi, F. Guo, H. Zhai, Y. Yan, Q. Wang, Ag3PO4 quantum dots M. Miodyńska, et al. Applied Catalysis B: Environmental 272 (2020) 118962 otwiera się w nowej karcie
  46. sensitized AgVO3 nanowires: A novel Ag3PO4/AgVO3 nanojunction with enhanced visible-light photocatalytic activity, Catal. Commun. 66 (2015) 67-72, https://doi. org/10.1016/j.catcom.2015.03.015. otwiera się w nowej karcie
  47. W. Chen, T.-Y. Liu, T. Huang, X.-H. Liu, J.-W. Zhu, G.-R. Duan, X.-J. Yang, In situ fabrication of novel Z-scheme Bi2WO6 quantum dots/g-C3N4 ultrathin nanosheets heterostructures with improved photocatalytic activity, Appl. Surf. Sci. 355 (2015) 379-387, https://doi.org/10.1016/j.apsusc.2015.07.111. otwiera się w nowej karcie
  48. B. Li, Z. Cao, S. Wang, Q. Wei, Z. Shen, BiVO4 quantum dot-decorated BiPO4 na- norods 0D/1D heterojunction for enhanced visible-light-driven photocatalysis, Dalton Trans. 47 (2018) 10288-10298, https://doi.org/10.1039/C8DT02402B. otwiera się w nowej karcie
  49. A.P. Chowdhury, B.H. Shambharkar, S.G. Ghugal, S.S. Umare, A.G. Shende, Ethylene glycol mediated synthesis of SnS quantum dots and their application to- wards degradation of eosin yellow and brilliant green dyes under solar irradiation, RSC Adv. 6 (2016) 108290-108297, https://doi.org/10.1039/C6RA10532G. otwiera się w nowej karcie
  50. W. Zhao, Z. Wei, L. Ma, J. Liang, X. Zhang, Ag 2 S quantum dots based on flower- like SnS 2 as matrix and enhanced photocatalytic degradation, Materials (2019) 1-11, https://doi.org/10.3390/ma12040582. otwiera się w nowej karcie
  51. B. Bajorowicz, E. Kowalska, J. Nadolna, Z. Wei, M. Endo, B. Ohtani, A. Zaleska- Medynska, Preparation of CdS and Bi2S3 quantum dots co-decorated perovskite- type KNbO3 ternary heterostructure with improved visible light photocatalytic activity and stability for phenol degradation, Dalton Trans. 47 (2018) 15232-15245, https://doi.org/10.1039/C8DT03094D. otwiera się w nowej karcie
  52. S.R. Kadam, R.P. Panmand, R.S. Sonawane, S.W. Gosavi, B.B. Kale, A stable Bi2S3 quantum dot-glass nanosystem: size tuneable photocatalytic hydrogen production under solar light, RSC Adv. 5 (2015) 58485-58490, https://doi.org/10.1039/ C5RA10244H. otwiera się w nowej karcie
  53. M. Bernechea, Y. Cao, G. Konstantatos, Size and bandgap tunability in Bi2S3 col- loidal nanocrystals and its effect in solution processed solar cells, J. Mater. Chem. A. 3 (2015) 20642-20648, https://doi.org/10.1039/C5TA04441C. otwiera się w nowej karcie
  54. P. Mazierski, A. Mikolajczyk, B. Bajorowicz, A. Malankowska, A. Zaleska-medynska, J. Nadolna, Appl. Catal. B Environ. 233 (2018) 301-317, https://doi.org/10.1016/ j.apcatb.2018.04.019. otwiera się w nowej karcie
  55. S. Obregón, A. Kubacka, M. Fernández-García, G. Colón, High-performance Er3+-TiO2 system: dual up-conversion and electronic role of the lanthanide, J. Catal. 299 (2013) 298-306, https://doi.org/10.1016/j.jcat.2012.12.021. otwiera się w nowej karcie
  56. W. Yang, X. Li, D. Chi, H. Zhang, Lanthanide-doped upconversion materials : emerging applications for photovoltaics and photocatalysis, Nanotechnology 482001 (n.d.). doi:10.1088/0957-4484/25/48/482001. otwiera się w nowej karcie
  57. J. Reszczyńska, T. Grzyb, J.W. Sobczak, W. Lisowski, M. Gazda, B. Ohtani, A. Zaleska, Lanthanide co-doped TiO2: the effect of metal type and amount on surface properties and photocatalytic activity, Appl. Surf. Sci. 307 (2014) 333-345, https://doi.org/10.1016/j.apsusc.2014.03.199. otwiera się w nowej karcie
  58. J. Reszczyńska, T. Grzyb, J.W. Sobczak, W. Lisowski, M. Gazda, B. Ohtani, A. Zaleska, Visible light activity of rare earth metal doped (Er3+, Yb3+ or Er3+/ Yb3+) titania photocatalysts, Appl. Catal. B Environ. 163 (2015) 40-49, https:// doi.org/10.1016/j.apcatb.2014.07.010. otwiera się w nowej karcie
  59. J. Reszczyńska, T. Grzyb, Z. Wei, M. Klein, E. Kowalska, B. Ohtani, A. Zaleska- Medynska, Photocatalytic activity and luminescence properties of RE3+-TiO2 nanocrystals prepared by sol-gel and hydrothermal methods, Appl. Catal. B Environ. 181 (2016) 825-837, https://doi.org/10.1016/j.apcatb.2015.09.001. otwiera się w nowej karcie
  60. P. Mazierski, W. Lisowski, T. Grzyb, M.J. Winiarski, T. Klimczuk, A. Mikołajczyk, J. Flisikowski, A. Hirsch, A. Kołakowska, T. Puzyn, A. Zaleska-medynska, J. Nadolna, Enhanced photocatalytic properties of lanthanide-TiO2 nanotubes: an experimental and theoretical study, Appl. Catal. B, Environ. (2016), https://doi. org/10.1016/j.apcatb.2016.12.044. otwiera się w nowej karcie
  61. X. Wang, D. Li, Y. Guo, X. Wang, Y. Du, R. Sun, Preparation of lanthanide doped CdS, ZnS quantum dots in natural polysaccharide template and their optical prop- erties, Opt. Mater. (Amst). 34 (2012) 646-651, https://doi.org/10.1016/j.optmat. 2011.09.013. otwiera się w nowej karcie
  62. A. Sarkar, A.B. Ghosh, N. Saha, A.K. Dutta, D.N. Srivastava, P. Paul, B. Adhikary, Enhanced photocatalytic activity of Eu-doped Bi2S3 nanoflowers for degradation of organic pollutants under visible light illumination, Catal. Sci. Technol. 5 (2015) 4055-4063, https://doi.org/10.1039/C5CY00473J. otwiera się w nowej karcie
  63. Y. Xue, J. Lin, Y. Fan, A. Elsanousi, X. Xu, J. Mi, J. Li, X. Zhang, Y. Lu, T. Zhang, C. Tang, Controllable synthesis of uniformly distributed hollow rutile TiO 2 hier- archical microspheres and their improved photocatalysis, Mater. Chem. Phys. 143 (2013) 446-454, https://doi.org/10.1016/j.matchemphys.2013.09.026. otwiera się w nowej karcie
  64. Y. Wang, F. Xin, J. Chen, T. Xiang, X. Yin, Photocatalytic reduction of CO 2 in Isopropanol on exposed 001 facets, J. Nanosci. Nanotechnol. 17 (2017) 1863-1869, https://doi.org/10.1166/jnn.2017.12871. otwiera się w nowej karcie
  65. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy cal- culations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169-11186, https://doi.org/10.1103/PhysRevB.54.11169. otwiera się w nowej karcie
  66. G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1996) 15-50, https://doi.org/10.1016/0927-0256(96)00008-0. otwiera się w nowej karcie
  67. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented- wave method, Phys. Rev. B 59 (1999) 1758-1775, https://doi.org/10.1103/ PhysRevB.59.1758. otwiera się w nowej karcie
  68. J. Sun, A. Ruzsinszky, J.P. Perdew, Strongly Constrained and Appropriately Normed Semilocal Density Functional, Phys. Rev. Lett. 115 (2015) 36402, https://doi.org/ 10.1103/PhysRevLett.115.036402. otwiera się w nowej karcie
  69. J. Sun, R.C. Remsing, Y. Zhang, Z. Sun, A. Ruzsinszky, H. Peng, Z. Yang, A. Paul, U. Waghmare, X. Wu, M.L. Klein, J.P. Perdew, Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional, Nat. Chem. 8 (2016) 831. otwiera się w nowej karcie
  70. H. Peng, Z.-H. Yang, J.P. Perdew, J. Sun, Versatile van der waals density functional based on a meta-generalized gradient approximation, Phys. Rev. X 6 (2016) 41005, https://doi.org/10.1103/PhysRevX.6.041005. otwiera się w nowej karcie
  71. J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Heyd, G.E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 8207 (2003), https://doi.org/10.1063/ 1.1564060. otwiera się w nowej karcie
  72. S.F. Wang, F. Gu, Z. Sen Yang, M.K. Lu, Facile synthesis of silica-coated Bi 2 S 3 nanorods and hollow silica nanotubes, J. Cryst. Growth 282 (2005) 79-84, https:// doi.org/10.1016/j.jcrysgro.2005.04.082. otwiera się w nowej karcie
  73. M. Klein, J. Nadolna, A. Gołąbiewska, P. Mazierski, T. Klimczuk, H. Remita, A. Zaleska-Medynska, The effect of metal cluster deposition route on structure and photocatalytic activity of mono-and bimetallic nanoparticles supported on TiO2 by radiolytic method, Appl. Surf. Sci. 378 (2016) 37-48, https://doi.org/10.1016/j. apsusc.2016.03.191. otwiera się w nowej karcie
  74. P. Mazierski, M. Nischk, M. Gołkowska, W. Lisowski, M. Gazda, M.J. Winiarski, T. Klimczuk, A. Zaleska-Medynska, Photocatalytic activity of nitrogen doped TiO2 nanotubes prepared by anodic oxidation: the effect of applied voltage, anodization time and amount of nitrogen dopant, Appl. Catal. B Environ. 196 (2016) 77-88, https://doi.org/10.1016/j.apcatb.2016.05.006. otwiera się w nowej karcie
  75. H. Tang, H. Berger, P.E. Schmid, F. Lévy, Optical properties of anatase (TiO2), Solid State Commun. 92 (1994) 267-271, https://doi.org/10.1016/0038-1098(94) 90889-3. otwiera się w nowej karcie
  76. F.J. Knorr, C.C. Mercado, J.L. McHale, Trap-State Distributions and Carrier Transport in Pure and Mixed-Phase TiO2: Influence of Contacting Solvent and Interphasial Electron Transfer, J. Phys. Chem. C. 112 (2008) 12786-12794, https:// doi.org/10.1021/jp8039934. otwiera się w nowej karcie
  77. P.C, A. Naumkin, A. Kraut-Vass, S. Gaarenstroom, NIST X-ray photoelectron spec- troscopy database 20, version 4.1, Natl. Inst. Stand. Technol. Gaithersbg. (2012), https://doi.org/10.18434/T4T88K. otwiera się w nowej karcie
  78. Y. Wang, Y. Wang, Y. Meng, H. Ding, Y. Shan, X. Zhao, X. Tang, A Highly Efficient Visible-Light-Activated Photocatalyst Based on Bismuth-and Sulfur-Codoped TiO2, J. Phys. Chem. C. 112 (2008) 6620-6626, https://doi.org/10.1021/jp7110007. otwiera się w nowej karcie
  79. G.T.K. Swami, F.E. Stageberg, A.M. Goldman, XPS characterization of erbium ses- quioxide and erbium hydroxide, J. Vac. Sci. Technol. A 2 (1984) 767-770, https:// doi.org/10.1116/1.572568. otwiera się w nowej karcie
  80. J. Zhou, L. Jiang, D. Chen, J. Liang, L. Qin, L. Bai, X. Sun, Y. Huang, Facile synthesis of Er-doped BiFeO3 nanoparticles for enhanced visible light photocatalytic de- gradation of tetracycline hydrochloride, J. Solgel Sci. Technol. 90 (2019) 535-546, https://doi.org/10.1007/s10971-019-04932-5. otwiera się w nowej karcie
  81. R.P. Panmand, M.V. Kulkarni, M. Valant, S.W. Gosavi, B.B. Kale, R.P. Panmand, M.V. Kulkarni, M. Valant, Quantum confinement of Bi2S3 in glass with magnetic behavior Quantum confinement of Bi 2 S 3 in glass with magnetic behavior, AIP Adv. 022123 (2013) 0-11, https://doi.org/10.1063/1.4794155. otwiera się w nowej karcie
  82. A.B. Kathare, Development of Bismuth Sulphide Quantum Dot' s in Silicate Glass Matrix, Int. J. Sci. Res. 6 (2017) 515-521. otwiera się w nowej karcie
  83. P.K. Panigrahi, A. Pathak, The growth of bismuth sulfide nanorods from spherical- shaped amorphous precursor particles under hydrothermal condition, J. Nanoparticles 2013 (2013) 1-12. otwiera się w nowej karcie
  84. T.A.F, A.S. Kanishcheva, Y.N. Mikhailov, Refinement of the crystal-structure of synthetic bismuthinite, Inorg. Mater. Appl. Res. 17 (1981) 1466-1468.
  85. The crystal structure of rutile as a function of temperature up to 1600°C, Zeitschrift für krist, Cryst. Mater. 194 (1991) 305, https://doi.org/10.1524/zkri.1991.194.14. 305. otwiera się w nowej karcie
  86. O. Bi, Z. Jie, X. Ying, Assisted hydrothermal synthesis of Sb 2 S 3 and Bi 2 S 3 nanocrystals and their elevated-temperature oxidation behavior for conversion into, J. Phy. Chem. Solids Biomol. 70 (2009) 1121-1131, https://doi.org/10.1016/j.jpcs. 2009.06.010. otwiera się w nowej karcie
  87. F. Liu, Y. Yang, J. Liu, W. Huang, Z. Li, Preparation of Bi 2 O 3 @ Bi 2 S 3 core - shell nanoparticle assembled thin films and their photoelectrochemical and pho- toresponsive properties, J. Electroanal. Chem. 665 (2012) 58-62, https://doi.org/ 10.1016/j.jelechem.2011.11.015. otwiera się w nowej karcie
  88. R.K. Chava, J.Y. Do, M. Kang, A. Abdel-wahab, Photocatalytic Hydrogen Production: Role of Sacrificial Reagents on the Activity of Oxide, Carbon, and Sulfide Catalysts, Catalysts (n.d.). doi:10.3390/catal9030276. otwiera się w nowej karcie
  89. Y. Huang, J. Qin, X. Liu, D. Wei, H. Jin, Hydrothermal synthesis of flower-like Na- doped α-Bi2O3 and improved photocatalytic activity via the induced oxygen va- cancies, J. Taiwan Inst. Chem. Eng. (2018), https://doi.org/10.1016/j.jtice.2018. 11.029. otwiera się w nowej karcie
  90. J. Zhang, Y. Wang, RSC Advances A convenient method to prepare a novel alkali metal sodium doped carbon nitride photocatalyst with a tunable band structure †, RSC Adv. 4 (2014) 62912-62919, https://doi.org/10.1039/C4RA11377B. otwiera się w nowej karcie
  91. L. Zhang, N. Ding, M. Hashimoto, K. Iwasaki, N. Chikamori, K. Nakata, Y. Xu, J. Shi, H. Wu, Y. Luo, D. Li, A. Fujishima, Q. Meng, Sodium-doped carbon nitride nano- tubes for efficient visible light-driven hydrogen production, Nano Res. 11 (2018) 2295-2309, https://doi.org/10.1007/s12274-017-1853-3. otwiera się w nowej karcie
  92. X. Yu, C. Cao, H. Zhu, Synthesis and photoluminescence properties of Bi2S3 na- nowires via surfactant micelle-template inducing reaction, Solid State Commun. 134 (2005) 239-243, https://doi.org/10.1016/j.ssc.2005.01.035. otwiera się w nowej karcie
  93. F.-A. Liu, Y.-C. Yang, J. Liu, W. Huang, Z.-L. Li, Preparation of Bi2O3@Bi2S3 core-shell nanoparticle assembled thin films and their photoelectrochemical and photoresponsive properties, J. Electroanal. Chem. 665 (2012) 58-62, https://doi. org/10.1016/j.jelechem.2011.11.015. otwiera się w nowej karcie
  94. D.Y.C. Leung, X. Fu, C. Wang, M. Ni, M.K.H. Leung, X. Wang, X. Fu, Hydrogen production over titania-based photocatalysts, ChemSusChem. 3 (2010) 681-694, https://doi.org/10.1002/cssc.201000014. otwiera się w nowej karcie
  95. M. Miodyńska, et al. Applied Catalysis B: Environmental 272 (2020) 118962 otwiera się w nowej karcie
  96. Z. Shi, X. Dong, H. Dang, Facile fabrication of novel red phosphorus-CdS composite photocatalysts for H2 evolution under visible light irradiation, Int. J. Hydrogen Energy 41 (2016) 5908-5915, https://doi.org/10.1016/j.ijhydene.2016.02.146. otwiera się w nowej karcie
  97. C. Wang, L. Wang, J. Jin, J. Liu, Y. Li, M. Wu, L. Chen, B. Wang, X. Yang, B.-L. Su, Probing effective photocorrosion inhibition and highly improved photocatalytic hydrogen production on monodisperse PANI@CdS core-shell nanospheres, Appl. Catal. B Environ. 188 (2016) 351-359, https://doi.org/10.1016/j.apcatb.2016.02. 017. otwiera się w nowej karcie
  98. M. Wang, S. Shen, Effects of sacrificial reagents on photocatalytic hydrogen evolution over different photocatalysts, J. Mater. Sci. (2017), https://doi.org/10. 1007/s10853-017-0752-z. otwiera się w nowej karcie
  99. Y.G. Kim, W. Jo, ScienceDirect Photodeposited-metal / CdS / ZnO heterostructures for solar photocatalytic hydrogen production under different conditions, Int. J. Hydrogen Energy (2017) 1-8, https://doi.org/10.1016/j.ijhydene.2017.02.176. otwiera się w nowej karcie
  100. N. Bao, L. Shen, T. Takata, K. Domen, Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light, Chem. Mater. (2008) 110-117. otwiera się w nowej karcie
  101. M. Miodyńska, et al. Applied Catalysis B: Environmental 272 (2020) 118962 otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 30 razy

Publikacje, które mogą cię zainteresować

Meta Tagi