Nie znaleźliśmy wyników w zadanych kryteriach!
Ale mamy wyniki w innych katalogach.Filtry
wszystkich: 8027
-
Katalog
- Publikacje 6242 wyników po odfiltrowaniu
- Czasopisma 67 wyników po odfiltrowaniu
- Konferencje 7 wyników po odfiltrowaniu
- Osoby 75 wyników po odfiltrowaniu
- Wynalazki 2 wyników po odfiltrowaniu
- Projekty 2 wyników po odfiltrowaniu
- Laboratoria 1 wyników po odfiltrowaniu
- Kursy Online 97 wyników po odfiltrowaniu
- Wydarzenia 6 wyników po odfiltrowaniu
- Dane Badawcze 1528 wyników po odfiltrowaniu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: GENERALIZED EIGENVALUE PROBLEM, FEM, COMPLEX-VALUED SPARSE MATRIX PENCIL, GPU, MAXWELL’S EQUATIONS.
-
A GPU Solver for Sparse Generalized Eigenvalue Problems with Symmetric Complex-Valued Matrices Obtained Using Higher-Order FEM
PublikacjaThe paper discusses a fast implementation of the stabilized locally optimal block preconditioned conjugate gradient (sLOBPCG) method, using a hierarchical multilevel preconditioner to solve nonHermitian sparse generalized eigenvalue problems with large symmetric complex-valued matrices obtained using the higher-order finite-element method (FEM), applied to the analysis of a microwave resonator. The resonant frequencies of the low-order...
-
A memory efficient and fast sparse matrix vector product on a Gpu
PublikacjaThis paper proposes a new sparse matrix storage format which allows an efficient implementation of a sparse matrix vector product on a Fermi Graphics Processing Unit (GPU). Unlike previous formats it has both low memory footprint and good throughput. The new format, which we call Sliced ELLR-T has been designed specifically for accelerating the iterative solution of a large sparse and complex-valued system of linear equations arising...
-
Block Conjugate Gradient Method with Multilevel Preconditioning and GPU Acceleration for FEM Problems in Electromagnetics
PublikacjaIn this paper a GPU-accelerated block conjugate gradient solver with multilevel preconditioning is presented for solving large system of sparse equations with multiple right hand-sides (RHSs) which arise in the finite-element analysis of electromagnetic problems. We demonstrate that blocking reduces the time to solution significantly and allows for better utilization of the computing power of GPUs, especially when the system matrix...
-
Single and Dual-GPU Generalized Sparse Eigenvalue Solvers for Finding a Few Low-Order Resonances of a Microwave Cavity Using the Finite-Element Method
PublikacjaThis paper presents two fast generalized eigenvalue solvers for sparse symmetric matrices that arise when electromagnetic cavity resonances are investigated using the higher-order finite element method (FEM). To find a few loworder resonances, the locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm with null-space deflation is applied. The computations are expedited by using one or two graphical processing...
-
Tuning matrix-vector multiplication on GPU
PublikacjaA matrix times vector multiplication (matvec) is a cornerstone operation in iterative methods of solving large sparse systems of equations such as the conjugate gradients method (cg), the minimal residual method (minres), the generalized residual method (gmres) and exerts an influence on overall performance of those methods. An implementation of matvec is particularly demanding when one executes computations on a GPU (Graphics...
-
GPU-accelerated finite element method
PublikacjaIn this paper the results of the acceleration of computations involved in analysing electromagnetic problems by means of the finite element method (FEM), obtained with graphics processors (GPU), are presented. A 4.7-fold acceleration was achieved thanks to the massive parallelization of the most time-consuming steps of FEM, namely finite-element matrix-generation and the solution of a sparse system of linear equations with the...
-
Preconditioners with Low Memory Requirements for Higher-Order Finite-Element Method Applied to Solving Maxwell’s Equations on Multicore CPUs and GPUs
PublikacjaThis paper discusses two fast implementations of the conjugate gradient iterative method using a hierarchical multilevel preconditioner to solve the complex-valued, sparse systems obtained using the higher order finite-element method applied to the solution of the time-harmonic Maxwell equations. In the first implementation, denoted PCG-V, a classical V-cycle is applied and the system of equations on the lowest level is solved...
-
Tuning a Hybrid GPU-CPU V-Cycle Multilevel Preconditioner for Solving Large Real and Complex Systems of FEM Equations
PublikacjaThis letter presents techniques for tuning an accelerated preconditioned conjugate gradient solver with a multilevel preconditioner. The solver is optimized for a fast solution of sparse systems of equations arising in computational electromagnetics in a finite element method using higher-order elements. The goal of the tuning is to increase the throughput while at the same time reducing the memory requirements in order to allow...
-
A Task-Scheduling Approach for Efficient Sparse Symmetric Matrix-Vector Multiplication on a GPU
PublikacjaIn this paper, a task-scheduling approach to efficiently calculating sparse symmetric matrix-vector products and designed to run on Graphics Processing Units (GPUs) is presented. The main premise is that, for many sparse symmetric matrices occurring in common applications, it is possible to obtain significant reductions in memory usage and improvements in performance when the matrix is prepared in certain ways prior to computation....
-
Implementation of algebraic procedures on the GPU using CUDA architecture on the example of generalized eigenvalue problem
Publikacja