Filtry
wszystkich: 133
wybranych: 83
Filtry wybranego katalogu
Wyniki wyszukiwania dla: sliding friction
-
Sliding friction of alumina (Al2O3) with friction induced vibrations
Dane BadawczeTest files containing data on experiments in self mated sliding contact of alumina Al2O3 lubricated with either water or paraffin oil. Tests run in variable load/velocity conditions and with different dynamic settings of the test rig (PT-3 tribometer). The aim of the research was to attempt in finding correlations between the dynamic characteristics...
-
Specimen running-in. Prep. to sliding friction tests. Ring-on-ring contact. Sintered alumina ceramics (98%). Paraffin oil lubrication. Specimen set #24 - #25.
Dane BadawczeSpecimen running-in procedure. Preparation to sliding friction tests in ring-on-ring contact. Sintered alumina ceramics (98%) in self-mated contact. Lubrication: paraffin oil. Sliding velocity: 0.2 m/s. Mean contact stress: 10 MPa. Test rig: PT-3 Tribometer. Specimen set #24 (upper, rotating), #25 (lower, non-rotating)CZ_PRZYS.MAT - accelerometerMOM_TAR.MAT...
-
Specimen running-in. Prep. to sliding friction tests. Ring-on-ring contact. Sintered alumina ceramics (98%). Paraffin oil lubrication. Specimen set #28 - #29.
Dane BadawczeSpecimen running-in procedure. Preparation to sliding friction tests in ring-on-ring contact. Sintered alumina ceramics (98%) in self-mated contact. Lubrication: paraffin oil. Sliding velocity: 0.2 m/s. Mean contact stress: 10 MPa. Test rig: PT-3 Tribometer. Specimen set #28 (upper, rotating), #29 (lower, non-rotating)CZ_PRZYS.MAT - accelerometerMOM_TAR.MAT...
-
Specimen running-in. Prep. to sliding friction tests. Ring-on-ring contact. Sintered alumina ceramics (98%). Paraffin oil lubrication. Specimen set #30 - #31.
Dane BadawczeSpecimen running-in procedure. Preparation to sliding friction tests in ring-on-ring contact. Sintered alumina ceramics (98%) in self-mated contact. Lubrication: paraffin oil. Sliding velocity: 0.2 m/s. Mean contact stress: 10 MPa. Test rig: PT-3 Tribometer. Specimen set #30 (upper, rotating), #31 (lower, non-rotating)CZ_PRZYS.MAT - accelerometerMOM_TAR.MAT...
-
Specimen running-in. Prep. to sliding friction tests. Ring-on-ring contact. Sintered alumina ceramics (98%). Paraffin oil lubrication. Specimen set #20 - #21.
Dane BadawczeSpecimen running-in procedure. Preparation to sliding friction tests in ring-on-ring contact. Sintered alumina ceramics (98%) in self-mated contact. Lubrication: paraffin oil. Sliding velocity: 0.2 m/s. Mean contact stress: 10 MPa. Test rig: PT-3 Tribometer. Specimen set #20 (upper, rotating), #21 (lower, non-rotating)CZ_PRZYS.MAT - accelerometerMOM_TAR.MAT...
-
Specimen running-in. Prep. to sliding friction tests. Ring-on-ring contact. Sintered alumina ceramics (98%). Paraffin oil lubrication. Specimen set #22 - #23.
Dane BadawczeSpecimen running-in procedure. Preparation to sliding friction tests in ring-on-ring contact. Sintered alumina ceramics (98%) in self-mated contact. Lubrication: paraffin oil. Sliding velocity: 0.2 m/s. Mean contact stress: 10 MPa. Test rig: PT-3 Tribometer. Specimen set #22 (upper, rotating), #23 (lower, non-rotating)CZ_PRZYS.MAT - accelerometerMOM_TAR.MAT...
-
Specimen running-in. Prep. to sliding friction tests. Ring-on-ring contact. Sintered alumina ceramics (98%). Paraffin oil lubrication. Specimen set #28 - #29.
Dane BadawczeSpecimen running-in procedure. Preparation to sliding friction tests in ring-on-ring contact. Sintered alumina ceramics (98%) in self-mated contact. Lubrication: paraffin oil. Sliding velocity: 0.2 m/s. Mean contact stress: 10 MPa. Test rig: PT-3 Tribometer. Specimen set #28 (upper, rotating), #29 (lower, non-rotating)CZ_PRZYS.MAT - accelerometerMOM_TAR.MAT...
-
Specimen running-in. Prep. to sliding friction tests. Ring-on-ring contact. Sintered alumina ceramics (98%). Paraffin oil lubrication. Specimen set #26 - #27.
Dane BadawczeSpecimen running-in procedure. Preparation to sliding friction tests in ring-on-ring contact. Sintered alumina ceramics (98%) in self-mated contact. Lubrication: paraffin oil. Sliding velocity: 0.2 m/s. Mean contact stress: 10 MPa. Test rig: PT-3 Tribometer. Specimen set #26 (upper, rotating), #27 (lower, non-rotating)CZ_PRZYS.MAT - accelerometerMOM_TAR.MAT...
-
SiC coating in ring-on-ring sliding with saline solution (0.9%) lubrication 5MPa, 0.1m/s specimn. #B37/#A35
Dane BadawczeWear tests in sliding friction of SiC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, SiC over SiC . Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: SALINE SOLUTION (0.9%). Tribometer: PT-3. Overall test time till coating penetration 3 min.Secimen...
-
TiC coating in ring-on-ring sliding with saline solution (0.9%) lubrication 5MPa, 0.1m/s specimn. #A39/#B41
Dane BadawczeWear tests in sliding friction of TiC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, TiC over TiC . Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: SALINE SOLUTION (0.9%). Tribometer: PT-3. Overall test time till coating penetration 3 min.Secimen...
-
SiC coating in ring-on-ring sliding with saline solution (0.9%) lubrication 5MPa, 0.1m/s specimn. #A35/#B37
Dane BadawczeWear tests in sliding friction of SiC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, SiC over SiC . Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: SALINE SOLUTION (0.9%). Tribometer: PT-3. Overall test time till coating penetration 3 min.Secimen...
-
CrN coating in ring-on-ring sliding with distlled water lubrication 5MPa, 0.1m/s specimn. #A23/#B22
Dane BadawczeWear tests in sliding friction of CrN coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, CrN over CrN . Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: DISTILLED WATER. Tribometer: PT-3. Overall test time till coating penetration 12 min. The...
-
TiC coating in ring-on-ring sliding with distlled water lubrication 5MPa, 0.1m/s specimn. #B39/#A41
Dane BadawczeWear tests in sliding friction of TiC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, TiC over TiC . Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: DISTILLED WATER. Tribometer: PT-3. Overall test time till coating penetration 3 min. The test...
-
SiC coating in ring-on-ring sliding with distlled water lubrication 5MPa, 0.1m/s specimn. #B34/#A33
Dane BadawczeWear tests in sliding friction of SiC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, SiC over SiC. Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: DISTILLED WATER. Tribometer: PT-3. Overall test time till coating penetration 3 min. The test...
-
TiC coating in ring-on-ring sliding with distlled water lubrication 5MPa, 0.1m/s specimn. #A41/#B39
Dane BadawczeWear tests in sliding friction of TiC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, TiC over TiC . Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: DISTILLED WATER. Tribometer: PT-3. Overall test time till coating penetration 3 min. The...
-
CrN coating in ring-on-ring sliding with distlled water lubrication 5MPa, 0.1m/s specimn. #B22/#A23
Dane BadawczeWear tests in sliding friction of CrN coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, CrN over CrN. Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: DISTILLED WATER. Tribometer: PT-3. Overall test time till coating penetration 6 min. The test...
-
SiC coating in ring-on-ring sliding with distlled water lubrication 5MPa, 0.1m/s specimn. #A33/#B34
Dane BadawczeWear tests in sliding friction of SiC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, SiC over SiC. Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: DISTILLED WATER. Tribometer: PT-3. Overall test time till coating penetration 3 min. The test...
-
TiN coating in ring-on-ring sliding with saline solution (0.9%) lubrication 5MPa, 0.1m/s specimn. #B48/#A45
Dane BadawczeWear tests in sliding friction of TiN coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, TiN over TiN . Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: SALINE SOLUTION (0.9%). Tribometer: PT-3. Overall test time till coating penetration 12 min....
-
TiC coating in ring-on-ring sliding with saline solution (0.9%) lubrication 5MPa, 0.1m/s specimn. #B41/#A39
Dane BadawczeWear tests in sliding friction of TiC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, TiC over TiC . Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: SALINE SOLUTION (0.9%). Tribometer: PT-3. Overall test time till coating penetration 9 min....
-
TiN coating in ring-on-ring sliding with saline solution (0.9%) lubrication 5MPa, 0.1m/s specimn. #A45/#B48
Dane BadawczeWear tests in sliding friction of TiN coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, TiN over TiN . Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: SALINE SOLUTION (0.9%). Tribometer: PT-3. Overall test time till coating penetration 12 min....
-
CrN coating in ring-on-ring sliding with saline solution (0.9%) lubrication 5MPa, 0.1m/s specimn. #A25/#B21
Dane BadawczeWear tests in sliding friction of CrN coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, CrN over CrN . Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: SALINE SOLUTION (0.9%). Tribometer: PT-3. Overall test time till coating penetration 9 min....
-
TiN coating in ring-on-ring sliding with distlled water lubrication 5MPa, 0.1m/s specimn. #A45/#A47
Dane BadawczeWear tests in sliding friction of TiN coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, TiN over TiN. Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: DISTILLED WATER. Tribometer: PT-3. Overall test time till coating penetration 20 min. The test...
-
TiN coating in ring-on-ring sliding with distlled water lubrication 5MPa, 0.1m/s specimn. #A45/#B45
Dane BadawczeWear tests in sliding friction of TiN coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, TiN over TiN. Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: DISTILLED WATER. Tribometer: PT-3. Overall test time till coating penetration 90 min. The test...
-
CrN coating in ring-on-ring sliding with saline solution (0.9%) lubrication 5MPa, 0.1m/s specimn. #B21/#A21
Dane BadawczeWear tests in sliding friction of CrN coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, CrN over CrN . Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: SALINE SOLUTION (0.9%). Tribometer: PT-3. Overall test time till coating penetration 25 min....
-
DLC coating in ring-on-ring sliding with water lubrication 10MPa/0.1m/s
Dane BadawczeWear tests in sliding friction of DLC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, DLC-W over DLC-W. Mean contact stress: 10MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: WATER. Tribometer: PT-3. Overall test time >15h. The test was augmented by vibration...
-
DLC coating in ring-on-ring sliding with water lubrication 20MPa/0.1m/s
Dane BadawczeWear tests in sliding friction of DLC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, DLC-W over DLC-W. Mean contact stress: 20MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: WATER. Tribometer: PT-3. Overall test time >15h. The test was augmented by vibration...
-
DLC coating doped with W in ring-on-ring sliding with water lubrication 20MPa/0.1m/s
Dane BadawczeWear tests in sliding friction of 1% W (tungsten) doped DLC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, DLC-W over DLC-W. Mean contact stress: 20MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: WATER. Tribometer: PT-3. Overall test time >15h. The test was...
-
DLC coating doped with W in ring-on-ring sliding with water lubrication 10MPa/0.1m/s
Dane BadawczeWear tests in sliding friction of 1% W (tungsten) doped DLC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, DLC-W over DLC-W. Mean contact stress: 10MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: WATER. Tribometer: PT-3. Overall test time >15h. The test was...
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_h_4
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
DLC coating in ring-on-ring sliding with saline solution (0.9% wt.) lubrication 20MPa/0.1m/s
Dane BadawczeWear tests in sliding friction of DLC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, DLC-W over DLC-W. Mean contact stress: 20MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: SALINE SOLUTION (0.9% wt.). Tribometer: PT-3. Overall test time >15h. The test was augmented...
-
DLC coating in ring-on-ring sliding with saline solution (0.9% wt.) lubrication 10MPa/0.1m/s
Dane BadawczeWear tests in sliding friction of DLC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, DLC-W over DLC-W. Mean contact stress: 10MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: SALINE SOLUTION (0.9% wt.). Tribometer: PT-3. Overall test time >15h. The test was augmented...
-
DLC coating doped with W in ring-on-ring sliding with saline solution (0.9% wt.) lubrication 20MPa/0.1m/s
Dane BadawczeWear tests in sliding friction of 1% W (tungsten) doped DLC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, DLC-W over DLC-W. Mean contact stress: 20MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: SALINE SOLUTION (0.9% wt.). Tribometer: PT-3. Overall test time >15h....
-
DLC coating doped with W in ring-on-ring sliding with saline solution (0.9% wt.) lubrication 10MPa/0.1m/s
Dane BadawczeWear tests in sliding friction of 1% W (tungsten) doped DLC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, DLC-W over DLC-W. Mean contact stress: 10MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: SALINE SOLUTION (0.9% wt.). Tribometer: PT-3. Overall test time >15h....
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_v_2
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_v_3
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_h_3
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_v_5
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_h_5
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_h_4
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_h_4
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_v_4
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_h_5
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_v_4
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_v_4
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_v_3
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_v_3
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_h_3
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_h_5
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_v_2
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_h_3
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.