Filtry
wszystkich: 8
wybranych: 7
Filtry wybranego katalogu
Wyniki wyszukiwania dla: LPXC
-
A new factor LapD is required for the regulation of LpxC amounts and lipopolysaccharide trafficking
PublikacjaLipopolysaccharide (LPS) constitutes the major component of the outer membrane and is essential for bacteria, such as Escherichia coli. Recent work has revealed the essential roles of LapB and LapC proteins in regulating LPS amounts; although, if any additional partners are involved is unknown. Examination of proteins co-purifying with LapB identified LapD as a new partner. The purification of LapD reveals that it forms a complex...
-
Suppressors of lapC mutation identify new regulators of LpxC, which mediates the first committed step in lipopolysaccharide biosynthesis
PublikacjaGram-negative bacteria, such as Escherichia coli, are characterized by an asymmetric outer membrane (OM) with lipopolysaccharide (LPS) located in the outer leaflet and phospholipids facing the inner leaflet. E. coli recruits LPS assembly proteins LapB, LapC and LapD in concert with FtsH protease to ensure a balanced biosynthesis of LPS and phospholipids. We recently reported that bacteria either lacking the periplasmic domain of...
-
Regulation of the First Committed Step in Lipopolysaccharide Biosynthesis Catalyzed by LpxC Requires the Essential Protein LapC (YejM) and HslVU Protease
PublikacjaWe previously showed that lipopolysaccharide (LPS) assembly requires the essential LapB protein to regulate FtsH-mediated proteolysis of LpxC protein that catalyzes the first committed step in the LPS synthesis. To further understand the essential function of LapB and its role in LpxC turnover, multicopy suppressors of ΔlapB revealed that overproduction of HslV protease subunit prevents its lethality by proteolytic degradation...
-
Regulation of LPS assembly via controlled proteolysis and sensing of LPS stress in Escherichia coli
PublikacjaLipopolysaccharide (LPS) is a complex glycolipid, essential for the bacterial viability and along with phospholipids, it constitutes the major amphiphilic component of outer membrane (OM) in most of the Gram-negative bacteria, including Escherichia coli. LPS molecules confer an effective permeability barrier to the OM and play a crucial role in bacteria-environment and -host interactions. The synthesis and accumulation of this...
-
Assembly of Lipopolysaccharide in Escherichia coli Requires the Essential LapB Heat Shock Protein
PublikacjaHere, we describe two new heat shock proteins involved in the assembly of LPS in Escherichia coli, LapA and LapB (lipopolysaccharide assembly protein A and B). lapB mutants were identified based on an increased envelope stress response. Envelope stress responsive pathways control key steps in LPS biogenesis and respond to defects in the LPS assembly. Accordingly, the LPS content in ΔlapB or Δ(lapA lapB) mutants was elevated, with...
-
Checkpoints that regulate balanced biosynthesis of lipopolysaccharide and its essentiality in Escherichia coli
PublikacjaThe outer membrane (OM) of Gram-negative bacteria, such as Escherichia coli, is essential for their viability. Lipopolysaccharide (LPS) constitutes the major component of OM, providing the permeability barrier, and a tight balance exists between LPS and phospholipids amounts as both of these essential components use a common metabolic precursor. Hence, checkpoints are in place, right from the regulation of the first committed step...
-
Molecular basis of essentiality of early critical steps in the lipopolysaccharide biogenesis in Escherichia coli K-12: requirement of MsbA, cardiolipin, LpxL, LpxM and GcvB
PublikacjaTo identify the physiological factors that limit the growth of Escherichia coli K-12 strains synthesizing minimal lipopolysaccharide (LPS), we describe the first construction of strains devoid of the entire waa locus and concomitantly lacking all three acyltransferases (LpxL/LpxM/LpxP), synthesizing minimal lipid IVA derivatives with a restricted ability to grow at around 21 °C. Suppressors restoring growth up to 37 °C of Δ(gmhD-waaA)...