Filtry
wszystkich: 5722
wybranych: 5108
-
Katalog
Filtry wybranego katalogu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: MODIFICATION FACTORS, SEISMIC RETROFIT, SEISMIC COLLAPSE CAPACITY, FLUID VISCOUS DAMPERS, STRUCTURAL POUNDING
-
Predicting the seismic collapse capacity of adjacent SMRFs retrofitted with fluid viscous dampers in pounding condition
PublikacjaSevere damages of adjacent structures due to structural pounding during earthquakes have emphasized the need to use some seismic retrofit strategy to enhance the structural performance. The purpose of this paper is to study the influence of using linear and nonlinear Fluid Viscous Dampers (FVDs) on the seismic collapse capacities of adjacent structures prone to pounding and proposing modification factors to modify the median...
-
Predicting the seismic collapse capacity of adjacent SMRFs retrofitted with fluid viscous dampers in pounding condition
PublikacjaSevere damages of adjacent structures due to structural pounding during earthquakes have emphasized the need to use some seismic retrofit strategy to enhance the structural performance. The purpose of this paper is to study the influence of using linear and nonlinear Fluid Viscous Dampers (FVDs) on the seismic collapse capacities of adjacent structures prone to pounding and proposing modification factors to modify the median...
-
Mitigating the seismic pounding of multi-story buildings in series using linear and nonlinear fluid viscous dampers
PublikacjaSeismic-induced pounding between adjacent buildings may have serious consequences, ranging from minor damage up to total collapse. Therefore, researchers try to mitigate the pounding problem using different methods, such as coupling the adjacent buildings with stiff beams, connecting them by using viscoelastic links, and installing damping devices in each building individually. In the current paper, the effect of using linear and...
-
Predicting the seismic collapse capacity of adjacent structures prone to pounding
PublikacjaIn crowded cities, many structures are often constructed in a very close vicinity; therefore, during severe earthquakes, pounding phenomenon occurs due to out-of-phase vibrations of adjacent structures. In this study, pounding of adjacent structures is investigated up to the occurrence of total collapse. The novelty of this study is performing incremental dynamic analyses to compute the seismic collapse capacities of both pounding...
-
Optimal retrofit strategy using viscous dampers between adjacent RC and SMRFs prone to earthquake‑induced pounding
PublikacjaNowadays, retrofitting-damaged buildings is an important challenge for engineers. Finding the optimal placement of Viscous Dampers (VDs) between adjacent structures prone to earthquake-induced pounding can help designers to implement VDs with optimizing the cost of construction and achieving higher performance levels for both structures. In this research, the optimal placement of linear and nonlinear VDs between the 3-story, 5-story,...
-
Investigating the effects of structural pounding on the seismic performance of adjacent RC and steel MRFs
PublikacjaAn insufficient separation distance between adjacent buildings is the main reason for structural pounding during severe earthquakes. The lateral load resistance system, fundamental natural period, mass, and stiffness are important factors having the influence on collisions between two adjacent structures. In this study, 3-, 5- and 9-story adjacent reinforced concrete and steel Moment Resisting Frames (MRFs) were considered to investigate...
-
Effect of soil on the capacity of viscous dampers between adjacent buildings
PublikacjaThis study investigated the seismic pounding of two adjacent buildings considering soil–structure interaction (SSI). A comprehensive parametric study of buildings with different heights was performed to reveal the pounding-involved behaviour considering the soil effect. Wavelet transform has been conducted to gain insight into the differences in the frequency contents of the impact forces between fixed- and flexible-base adjacent...
-
Evaluation the P-Delta Effect on Collapse Capacity of Adjacent Structures Subjected to Far-field Ground Motions
PublikacjaIn urban areas, adjacent structures can be seen in any insufficient distance from each other, because of economic reasons and refusal of acquired minimum separation distance according to seismic previsions. Collapse capacity assessment of structures is one of the important objectives of performance-based seismic engineering. The purpose of this study is to consider the pounding phenomenon and P-Delta effect in seismic collapse...
-
Seismic probabilistic assessment of steel and reinforced concrete structures including earthquake-induced pounding
PublikacjaRecent earthquakes demonstrate that prioritizing the retrofitting of buildings should be of the utmost importance for enhancing the seismic resilience and structural integrity of urban structures. To have a realistic results of the pounding effects in modeling process of retrofitting buildings, the present research provides seismic Probability Factors (PFs), which can be used for estimating collision effects without engaging in...
-
Earthquake-Induced Structural Pounding
PublikacjaEarthquake-induced structural pounding between insufficiently separated build-ings, or bridge segments, has been repeatedly observed during ground motions. The reports after earthquakes indicate that it may lead to some local damage in the case of moderate seismic events or may result in considerable destruction or even collapse of colliding structures during severe ground motions. Pounding in build-ings is usually caused by the...
-
Pounding between Inelastic Three-Storey Buildings under Seismic Excitations
PublikacjaStructural interactions between adjacent, insufficiently separated buildings have been repeatedly observed during damaging ground motions. This phenomenon, known as the structural pounding, may result in substantial damage or even total collapse of structures. The aim of the present paper is to show the results of the nonlinear numerical analysis focused on pounding between inelastic three-storey buildings under seismic excitations....
-
Investigating an Optimal Computational Strategy to Retrofit Buildings with Implementing Viscous Dampers
PublikacjaCivil engineering structures may seriously suffer from different damage states re-sult of earthquakes. Nowadays, retrofitting the existing buildings is a serious need among designers. Two important factors of required performance level and cost of retrofitting play a crucial role in the retrofitting approach. In this study, a new optimal computational strategy to retrofit structures by implementing linear Viscous Dampers (VDs)...
-
Introducing a Computational Method to Retrofit Damaged Buildings under Seismic Mainshock-Aftershock Sequence
PublikacjaRetrofitting damaged buildings is a challenge for engineers, since commercial software does not have the ability to consider the local damages and deformed shape of a building resulting from the mainshock record of an earthquake before applying the aftershock record. In this research, a computational method for retrofitting of damaged buildings under seismic mainshock-aftershock sequences is proposed, and proposed computational...
-
Seismic performance evaluation of steel buckling-restrained braced frames including SMA materials
PublikacjaThe permanent deformation of the building after seismic excitations can be determined by the Maximum Residual Interstory Drift Ratio (MR-IDR), which may be used for measuring the damage states. Low-post yield stiffness of the steel buckling-restrained braced frame (BRBF) makes this system vulnerable to large MR-IDR after a severe earthquake event. To overcome this issue, this paper investigates the seismic limit state performances...
-
Seismic damage diagnosis in adjacent steel and RC MRFs considering pounding effects through improved wavelet-based damage-sensitive feature
PublikacjaThis paper aims to propose complex Morlet (cmorfb-fc) wavelet-based refined damage-sensitive feature (rDSF) as a new and more precise damage indicator to diagnose seismic damages in adjacent steel and Reinforced Concrete (RC) Moment Resisting Frames (MRFs) assuming pounding conditions using acceleration responses. The considered structures include 6- and 9-story steel and 4- and 8-story RC benchmark MRFs that are assumed to have...
-
Numerical Analysis of Seismic Pounding between Adjacent Buildings Accounting for SSI
PublikacjaThe structural pounding caused by an earthquake may damage structures and lead to their collapse. This study is focused on the pounding between two adjacent asymmetric structures with different dynamic properties resting on the surface of an elastic half-space. An exploration of the relationship between the effects of the seismic analysis with the impact response to the torsional pounding between adjacent buildings under different...
-
Highly Dissipative Materials for Damage Protection against Earthquake-Induced Structural Pounding
PublikacjaIt is a common situation that seismic excitations may lead to collisions between adjacent civil engineering structures. This phenomenon, called earthquake-induced structural pounding, may result in serious damage or even the total collapse of the colliding structures. Filling the gap between two buildings erected close to one another by using visco-elastic materials can be considered to be one of the most effective methods to avoid...
-
Determination of Peak Impact Force for Buildings Exposed to Structural Pounding during Earthquakes
PublikacjaStructural pounding between adjacent, insufficiently separated buildings, or bridge segments, has been repeatedly observed during seismic excitations. Such earthquake-induced collisions may cause severe structural damage or even lead to the collapse of colliding structures. The aim of the present paper was to show the results of the study focused on determination of peak impact forces during collisions between buildings exposed...
-
Optimum shapes and dimensions of rubber bumpers in order to reduce structural pounding during seismic excitations
PublikacjaLarge displacement of structures observed during seismic excitations may lead to collisions between two adjacent, insufficiently-separated buildings and may result in major damages of both of them. In many building codes, appropriate equations or approximately recommended distances between structures in order to avoid pounding hazard have been introduced. Unfortunately, further, more detailed considerations show that safety situation...
-
Advanced Scalar-valued Intensity Measures for Residual Drift Prediction of SMRFs with Fluid Viscous Dampers
PublikacjaMaximum Residual Inter-story Drift Ratio (RIDRmax) plays an important role to specify the state of a structure after severe earthquake and the possibility of repairing the structure. Therefore, it is necessary to predict the RIDRmax of Steel Moment-Resisting Frames (SMRFs) with high reliability by employing powerful Intensity Measures (IMs). This study investigates the efficiency and sufficiency of scalar-valued IMs for predicting...
-
Seismic damage diagnosis in adjacent steel and RC MRFs considering pounding effects through improved wavelet-based damage-sensitive feature
PublikacjaThis paper aims to propose complex Morlet (cmorfb-fc) wavelet-based refined damage-sensitive feature (rDSF) as a new and more precise damage indicator to diagnose seismic damages in adjacent steel and Reinforced Concrete (RC) Moment Resisting Frames (MRFs) assuming pounding conditions using acceleration responses. The considered structures include 6- and 9-story steel and 4- and 8-story RC benchmark...
-
Seismic performance assessment of steel structures considering soil effects
PublikacjaNowadays, extreme need for construction of buildings in rural area increased the floor number of buildings, in which, the soil under foundation can affect the performance of buildings. In this research, soil effects were investigated to show soil type effects on the performance levels of steel structures. To do this, the 2-, 4-, 6-, and 8-story structures were modeled using ETABS software; then, the models were verified in Opensees...
-
Influence of separation gap on the response of colliding models of steel structures under seismic and paraseismic excitations
PublikacjaAs a result of high urbanization, the need to erect closely-spaced buildings forces designers to consider collisions between structures taking place during ground motions. Experimental and numerical studies have confirmed that such collisions (often referred to as structural pounding) may cause serious damage to the structural elements and even lead to total collapse of colliding structures. The main reason of earthquake-induced...
-
Effective Equations for the Optimum Seismic Gap Preventing Earthquake-Induced Pounding between Adjacent Buildings Founded on Different Soil Types
PublikacjaThe best approach to avoid collisions between adjacent structures during earthquakes is to provide sufficient spacing between them. However, the existing formulas for calculating the optimum seismic gap preventing pounding were found to provide inaccurate results upon the consideration of different soil types. The aim of this paper is to propose new equations for the evaluation of the sufficient in-between separation gap for buildings...
-
The Effectiveness of Rubber Bumpers in Reducing the Effects of Earthquake-Induced Pounding between Base-Isolated Buildings
PublikacjaTh e methods for preventing earthquake-induced structural pounding between two adjacent buildings include ensuring a sufficient separation distance between them or decreasing their relative displacement during seismic excitation. Some equations or even specific values of such gap sizes between two buildings have been introduced so as to avoid collisions. Increasing the stiffness of buildings, using tuned mass dampers, applying...
-
Damage-involved response of two colliding buildings under non-uniform earthquake loading
PublikacjaPounding between insufficiently separated buildings, which may result in considerable damage or may even lead to the total collapse of colliding structures, has been repeatedly observed during earthquakes. Earthquake-induced collisions of buildings has been intensively studied applying various structural models. It was assumed in the analyses, however, that the seismic excitation is identical for all structural supports; whereas,...
-
Performance of Vector-valued Intensity Measures for Estimating Residual Drift of Steel MRFs with Viscous Dampers
PublikacjaViscous Dampers (VDs) are widely used as passive energy dissipation system for improving seismic performance levels especially in retrofitting of buildings. Residual Inter-story Drift Ratio (R-IDR) is another important factor that specifies the condition of building after earthquake. The values of R-IDR illustrates the possibility of retrofitting and repairing of a building. Therefore, this study aims to explore the vector-valued...
-
Fragility analysis of structural pounding between adjacent structures arranged in series with various alignment configurations under near‑field earthquakes
PublikacjaA major cause of local to total damages is related to structural pounding in a large number of past earthquakes. In general, these collisions take place as a result of differences in the dynamic characteristics of the colliding structures. To acquire a better perception of the behavior of structures, in this paper, three structures featuring different heights are modeled in series and with various configurations next to each other...
-
Study on Polymer Elements for Mitigation of Earthquake-Induced Pounding Between Buildings in Complex Arrangements
PublikacjaPounding between neighboring structures during seismic events has been revealed as one of the most commonly observed reasons for severe damage or even total collapse of the adjacent buildings. Therefore, pounding effects have recently become an issue of great interest of many numerical and experimental investigations in many earthquake-prone regions of the world. It has also been observed that the differences in dynamic characteristics...
-
Preventing of earthquake-induced pounding between steel structures by using polymer elements – experimental study
PublikacjaPounding between two, or more, adjacent buildings during earthquakes has been identified as one of the reasons for substantial damage or even total collapse of colliding structures, so it has been the subject of numerous studies in the recent years. A major reason leading to interactions between adjacent, insufficiently separated structures results from the differences in their dynamic properties. A number of different methods...
-
EXPERIMENTAL ANALYSIS OF RUBBER AND STYROFOAM BUMPERS INFLUENCE ON THE COLLIDING STRUCTURES
PublikacjaPast and recent investigations of colliding structures under seismic excitation confirmed that pounding may have a significant influence on the structural response. Interactions between adjacent buildings may cause serious damage to the structures, leading even to its total collapse. The main reason of earthquake-induced pounding, besides insufficient distance between structures, are differences in stiffness or mass of colliding structures....
-
EFEKTYWNOŚĆ STOSOWANIA ZDERZAKÓW STYROPIANOWYCH POMIĘDZY ZDERZAJĄCYMI SIĘ KONSTRUKCJAMI STALOWYMI
PublikacjaPodczas wstrząsów sejsmicznych o różnym natężeniu, wielokrotnie obserwowano zjawisko zde-rzania się konstrukcji ze sobą sąsiadujących, co mogło prowadzić nawet do jej całkowitego zniszczenia. Na podstawie obserwacji, badań numeryczny i eksperymentalnych stwierdzono, że przyczyną kolizji jest niedostateczna przerwa pomiędzy konstrukcjami. Ponadto czynnikami, które również mogą doprowadzić do zderzeń są różnice w masach lub sztywnościach...
-
Influence of separation gap on the structural response of colliding structures under earthquake excitation
PublikacjaThe high level of urbanization in the XXIst century forces the designers to design closely-separated structures and to take into account many factors influencing their response during seismic excitation, which are the most unpredictable loads which can affect civil engineering structures. Interactions between insufficiently adjacent buildings, known as the earthquake-induced structural pounding, may cause serious damage to the structures,...
-
Experimental study on earthquake-induced pounding between steel structures
PublikacjaPounding between adjacent structures has been repeatedly observed during major earthquakes. The phenomenon may cause some local damage at the points of interactions, it may also lead to substantial destruction, permanent deformations or total collapse of colliding structures. The effects of earthquake-induced structural pounding have been studied for more than three decades now. However, most of the studies concerned masonry as...
-
Study on polymer elements for mitigation of earthquake-induced pounding between buildings in complex arrangements
PublikacjaPounding between neighbouring buildings during earthquakes has been identified as one of the reasons for substantial damage or even total collapse of colliding structures, so it has been the subject of numerous studies in the recent years. A major reason leading to interactions between adjacent, insufficiently separated structures results from the differences in their dynamic properties. The problem is much more complicated for...
-
Predicting the seismic collapse capacity of adjacent structures prone to pounding
Publikacja -
Damage-Involved Structural Pounding in Bridges under Seismic Excitation
PublikacjaDuring severe earthquakes, pounding between adjacent superstructure segments of highway elevated bridges was often observed. It is usually caused by the seismic wave propagation effect and may lead to significant damage. The aim of the present paper is to show the results of the numerical analysis focused on damage-involved pounding between neighbouring decks of an elevated bridge under seismic excitation. The analysis was carried...
-
Seismic Pounding Between Bridge Segments: A State-of-the-Art Review
PublikacjaEarthquake-induced structural pounding in bridge structures has been observed in several previous seismic events. Collisions occur at the expansion joints provided between adjacent decks or between the deck and abutment. Pounding between the structural elements may lead to severe damages and even to the unseating of the bridge in certain cases. Several investigations have been performed to study pounding in bridges under uniform...
-
Peak impact force for seismic retrofit of pounding-prone structures
PublikacjaCelem artykułu jest wykorzystanie dwuwymiarowych wykresów pokazujących wartość maksymalnej siły zderzenia (spektrów odpowiedzi) do wzmacniania odporności sejsmicznej budowli narażonych na zderzanie się podczas trzęsień ziemi. Wyniki analizy wskazują, iż wykresy takie mogą być bardzo przydatnym narzędziem przy podejmowaniu decyzji dotyczącej wyboru metody wzmacniania.
-
Advanced seismic control strategies for smart base isolation buildings utilizing active tendon and MR dampers
PublikacjaThis paper investigates the seismic behaviour of a five-storey shear building that incorporates a base isolation system. Initially, the study considers passive base isolation and employs a multi-objective archived-based whale optimization algorithm called MAWOA to optimize the parameters of base isolation. Subsequently, a novel model is proposed, which incorporates an interval type-2 Takagi-Sugeno fuzzy logic controller (IT2TSFLC)...
-
Analysis of the effect of the seismic gap on the response of buildings experiencing pounding during earthquakes
PublikacjaThe aim of this paper is to investigate the effect of the seismic gap on the dynamic response of buildings experiencing earthquake-induced pounding. Three buildings have been analysed, which are 5-storey, 7-storey and 9-storey structures. Three possible pounding scenarios have been considered, which are pounding between 5-storey and 7-storey buildings, pounding between 5-storey and 9-storey buildings and pounding between 7-storey...
-
Effects of Deck-Abutment Pounding on the Seismic Fragility Curves of Box-Girder Highway Bridges
PublikacjaEarthquake-induced pounding in bridges is a complex contact phenomenon in which the dynamic responses of structures, including collisions between deck and abutments, are strongly related to structural properties and earthquake excitation. The goal of this study is to develop and compare the seismic fragility curves of overall system and individual components of regular and irregular box-girder highway bridges in two cases: with...
-
An ANN-Based Approach for Prediction of Sufficient Seismic Gap between Adjacent Buildings Prone to Earthquake-Induced Pounding
PublikacjaEarthquake-induced structural pounding may cause major damages to structures, and therefore it should be prevented. This study is focused on using an artificial neural network (ANN) method to determine the sufficient seismic gap in order to avoid collisions between two adjacent buildings during seismic excitations. Six lumped mass models of structures with a different number of stories (from one to six) have been considered in...
-
Seismic gap between buildings founded on different soil types experiencing pounding during earthquakes
PublikacjaSeveral formulas have been suggested in the literature to evaluate the minimum seismic gap that would prevent collisions between adjacent buildings during earthquakes, including those based on the absolute sum of the peak displacements (ABS), square root of the sum of the squares (SRSS), the double difference method (DDC), Australian code, and approach proposed by Naderpour et al. The aim of the present study is to evaluate the...
-
Seismic pounding behavior of multi-story buildings in series considering the effect of infill panels
PublikacjaThe aim of the present paper is to study the influence of the infill panels on the seismic pounding response of adjacent structures in series. The contribution of the masonry infill has been simulated using equivalent diagonal compression struts. Steel frames have been assumed to have elastic-plastic behavior with 1% linear strain hardening. The dynamic contact analysis has been utilized where contact surface model (target and...
-
Probabilistic seismic assessment of RC box-girder highway bridges with unequal-height piers subjected to earthquake-induced pounding
PublikacjaThis paper uses the probabilistic seismic assessment to study the effects of pounding and irregularity on the seismic behavior of typical concrete box-girder bridges with four levels of altitudinal irregularity. To extend the results for all bridges in the same class, uncertainty related to the earthquake, structural geometries, and materials are considered. Pounding is likely to take place in two cases: the first one concerns...
-
Influence of soil–structure interaction on seismic pounding between steel frame buildings considering the effect of infill panels
PublikacjaThe present research aims to study the influence of the soil-structure interaction (SSI) and existence or absence of masonry infill panels in steel frame structures on the earthquake-induced pounding-involved response of adjacent buildings. The study was further extended to compare the pounding-involved behavior versus the independent behavior of structures without collisions, focusing much on dynamic behavior of single frames....
-
Letter to the Editor: Discussion on the Paper “State-of-the-Art of Research on Seismic Pounding Between Buildings with Aligned Slabs”
PublikacjaThe paper “State-of-the-art of research on seismic pounding between buildings with aligned slabs” (by Kharazian and López-Almansa) has recently been published in the journal of Archives of Computational Methods in Engineering. It can be considered as a kind of continuation of previous ‘state-of-the-art’ publications, including two papers and a book. Unfortunately, the paper contains a number of misleading or wrong statements as...
-
Seismic pounding between adjacent buildings: Identification of parameters, soil interaction issues and mitigation measures
PublikacjaStructural pounding has been observed in many previous earthquakes due to insufficient gap commonly provided between adjacent structures. The collisions usually generate large impact forces and short duration acceleration pulses which may result in significant damage to the colliding buildings. Because of that, earthquake induced structural pounding has been intensively studied and investigated for the last three decades. Results...
-
Machine learning-based seismic fragility and seismic vulnerability assessment of reinforced concrete structures
PublikacjaMany studies have been performed to put quantifying uncertainties into the seismic risk assessment of reinforced concrete (RC) buildings. This paper provides a risk-assessment support tool for purpose of retrofitting and potential design strategies of RC buildings. Machine Learning (ML) algorithms were developed in Python software by innovative methods of hyperparameter optimization, such as halving search, grid search, random...