Filtry
wszystkich: 4912
-
Katalog
- Publikacje 3775 wyników po odfiltrowaniu
- Czasopisma 174 wyników po odfiltrowaniu
- Konferencje 37 wyników po odfiltrowaniu
- Osoby 227 wyników po odfiltrowaniu
- Wynalazki 6 wyników po odfiltrowaniu
- Projekty 15 wyników po odfiltrowaniu
- Laboratoria 2 wyników po odfiltrowaniu
- Kursy Online 505 wyników po odfiltrowaniu
- Wydarzenia 5 wyników po odfiltrowaniu
- Dane Badawcze 166 wyników po odfiltrowaniu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: EM-DRIVEN DESIGN
-
Simulation-Driven Antenna Modeling by Means of Response Features and Confined Domains of Reduced Dimensionality
PublikacjaIn recent years, the employment of full-wave electromagnetic (EM) simulation tools has become imperative in the antenna design mainly for reliability reasons. While the CPU cost of a single simulation is rarely an issue, the computational overhead associated with EM-driven tasks that require massive EM analyses may become a serious bottleneck. A widely used approach to lessen this cost is the employment of surrogate models, especially...
-
Globalized Simulation-Driven Miniaturization of Microwave Circuits by Means of Dimensionality-Reduced Constrained Surrogates
PublikacjaSmall size has become a crucial prerequisite in the design of modern microwave components. Miniaturized devices are essential for a number of application areas, including wireless communications, 5G/6G technology, wearable devices, or the internet of things. Notwithstanding, size reduction generally degrades the electrical performance of microwave systems. Therefore, trade-off solutions have to be sought that represent acceptable...
-
Editorial for the special issue on advances in forward and inverse surrogate modeling for high-frequency design
PublikacjaThe design of modern‐day high‐frequency devices and circuits, including microwave/RF, antenna and photonic components, historically has relied on full‐wave electromagnetic (EM) simulation tools. Initially used for design verification, EM simulations are nowadays used in the design process itself, for example, for finding optimum values of geometry and/or material parameters of the structures of interest. In a growing number of...
-
Design-Oriented Two-Stage Surrogate Modeling of Miniaturized Microstrip Circuits with Dimensionality Reduction
PublikacjaContemporary microwave design heavily relies on full-wave electromagnetic (EM) simulation tools. This is especially the case for miniaturized devices where EM cross-coupling effects cannot be adequately accounted for using equivalent network models. Unfortunately, EM analysis incurs considerable computational expenses, which becomes a bottleneck whenever multiple evaluations are required. Common simulation-based design tasks include...
-
On Computationally-Efficient Reference Design Acquisition for Reduced-Cost Constrained Modeling and Re-Design of Compact Microwave Passives
PublikacjaFull-wave electromagnetic (EM) analysis has been playing a major role in the design of microwave components for the last few decades. In particular, EM tools allow for accurate evaluation of electrical performance of miniaturized structures where strong cross-coupling effects cannot be adequately quantified using equivalent network models. However, EM-based design procedures (parametric optimization, statistical analysis) generate...
-
Antenna Modeling Using Variable-Fidelity EM Simulations and Constrained Co-Kriging
PublikacjaUtilization of fast surrogate models has become a viable alternative to direct handling of fullwave electromagnetic (EM) simulations in EM-driven design. Their purpose is to alleviate the difficulties related to high computational cost of multiple simulations required by the common numerical procedures such as parametric optimization or uncertainty quantification. Yet, conventional data-driven (or approximation) modeling techniques...
-
Reduced-cost electromagnetic-driven optimisation of antenna structures by means of trust-region gradient-search with sparse Jacobian updates
PublikacjaNumerical optimisation plays more and more important role in the antenna design. Because of lack of design-ready theoretical models, electromagnetic (EM)-simulation-driven adjustment of geometry parameters is a necessary step of the design process. At the same time, traditional parameter sweeping cannot handle complex topologies and large number of design variables. On the other hand, high computational cost of the conventional...
-
Accelerated multi-objective design optimization of antennas by surrogate modeling and domain segmentation
PublikacjaMulti-objective optimization yields indispensable information about the best possible design trade-offs of an antenna structure, yet it is challenging if full-wave electromagnetic (EM) analysis is utilized for performance evaluation. The latter is a necessity for majority of contemporary antennas as it is the only way of achieving acceptable modeling accuracy. In this paper, a procedure for accelerated multi-objective design of...
-
Data-Driven Surrogate-Assisted Optimization of Metamaterial-Based Filtenna Using Deep Learning
PublikacjaIn this work, a computationally efficient method based on data driven surrogate models is pro-posed for the design optimization procedure of a Frequency Selective Surface (FSS)-based filtering antenna (Filtenna). A Filtenna acts as a as module that simultaneously pre-filters unwanted sig-nals, and enhances the desired signals at the operating frequency. However, due to a typically large number of design variables of FSS unit elements,...
-
Accelerated multi-objective design of miniaturized microwave components by means of nested kriging surrogates
PublikacjaDesign of microwave components is an inherently multiobjective task. Often, the objectives are at least partially conflicting and the designer has to work out a suitable compromise. In practice, generating the best possible trade‐off designs requires multiobjective optimization, which is a computationally demanding task. If the structure of interest is evaluated through full‐wave electromagnetic (EM) analysis, the employment of...
-
Rapid Design Tuning of Miniaturized Rat-Race Couplers Using Regression-Based Equivalent Network Surrogates
PublikacjaA simple technique for fast design tuning of compact rat-race couplers is presented. Our approach involves equivalent circuit representation, corrected by nonlinear functions of frequency with coefficients extracted through nonlinear regression. At the same time, the tuning process connects two levels of coupler representation: EM simulation of the entire circuit and re-optimization of the coupler building blocks (slow-wave cells...
-
Recent Advances in Performance-Driven Surrogate Modeling of High-Frequency Structures
PublikacjaDesign of high‐frequency structures, including microwave and antenna components, heavily relies on full‐wave electromagnetic (EM) simulation models. Their reliability comes at a price of a considerable computational cost. This may lead to practical issues whenever numerous EM analyses are to be executed, e.g., in the case of parametric optimization. The difficulties entailed by massive simulations may be mitigated by the use of...
-
Kriging metamodels and design re‐utilization for fast parameter tuning of antenna structures
PublikacjaThe paper addresses the problem of computationally efficient electromagnetic (EM)‐driven design closure of antenna structures. The foundations of the presented approach are fast kriging interpolation metamodels, utilized for two purposes: (a) producing a good starting point for further parameter tuning, and (b) yielding a reasonable Jacobian matrix estimate to jump‐start the optimization procedure. The models are rendered using...
-
Response Feature Technology for High-Frequency Electronics. Optimization, Modeling, and Design Automation
PublikacjaThis book discusses response feature technology and its applications to modeling, optimization, and computer-aided design of high-frequency structures including antenna and microwave components. By exploring the specific structure of the system outputs, feature-based approaches facilitate simulation-driven design procedures, both in terms of improving their computational efficiency and reliability. These benefits are associated...
-
Reduced-Cost Design Optimization of High-Frequency Structures Using Adaptive Jacobian Updates
PublikacjaElectromagnetic (EM) analysis is the primary tool utilized in the design of high-frequency structures. In vast majority of cases, simpler models (e.g., equivalent networks or analytical ones) are either not available or lack accuracy: they can only be used to yield initial designs that need to be further tuned. Consequently, EM-driven adjustment of geometry and/or material parameters of microwave and antenna components is a necessary...
-
Expedited design of microstrip antenna subarrays using surrogate-based optimization
PublikacjaComputationally efficient simulation-driven design of microstrip antenna subarrays is presented. The proposed design approach aims at simultaneous adjustment of all relevant geometry parameters of the subarray, which allows us to take into account the effect of the feeding network on the subarray radiation pattern (in particular, the side lobe level, SLL). In order to handle a large number of variables involved in the design process,...
-
Fast Design Closure of Compact Microwave Components by Means of Feature-Based Metamodels
PublikacjaPrecise tuning of geometry parameters is an important consideration in the design of modern microwave passive components. It is mandatory due to limitations of theoretical design methods unable to quantify certain phenomena that are important for the operation and performance of the devices (e.g., strong cross-coupling effects in miniaturized layouts). Consequently, the initial designs obtained using analytical or equivalent network...
-
Cost‐efficient performance‐driven modelling of multi‐band antennas by variable‐fidelity electromagnetic simulations and customized space mapping
PublikacjaElectromagnetic (EM) simulations have become an indispensable tool in the design of contemporary antennas. EM‐driven tasks, for example, parametric optimization, entail considerable computational efforts, which may be reduced by employing surrogate models. Yet, data‐driven modelling of antenna characteristics is largely hindered by the curse of dimensionality. This may be addressed using the recently reported domain‐confinement...
-
Rapid multi-criterial design of microwave components with robustness analysis by means of knowledge-based surrogates
PublikacjaManufacturing tolerances and uncertainties concerning material parameters, e.g., operating conditions or substrate permittivity are detrimental to characteristics of microwave components. The knowledge of relations between acceptable parameter deviations (not leading to violation of design specifications) and the nominal performance (not considering uncertainties), and is therefore indispensable. This paper proposes a multi-objective...
-
Design-oriented modeling of antenna structures by means of two-level kriging with explicit dimensionality reduction
PublikacjaThe employment of full-wave electromagnetic (EM) analysis is a practical necessity in the design of contemporary antenna structures. This is because simpler models are generally not available or of limited accuracy. At the same time, EM-based design is computationally expensive. Consequently, the ways of accelerating tasks such as parametric optimization or uncertainty quantification have to be sought. A possible workaround that...
-
Global Design Optimization of Microwave Circuits Using Response Feature Inverse Surrogates
PublikacjaModern microwave design has become heavily reliant on full-wave electromagnetic (EM) simulation tools, which are necessary for accurate evaluation of microwave components. Consequently, it is also indispensable for their development, especially the adjustment of geometry parameters, oriented towards performance improvement. However, EM-driven optimization procedures incur considerable computational expenses, which may become impractical...
-
On Improved-Reliability Design Optimization of High-Frequency Structures Using Local Search Algorithms
PublikacjaThe role of numerical optimization has been continuously growing in the design of high-frequency structures, including microwave and antenna components. At the same time, accurate evaluation of electrical characteristics necessitates full-wave electromagnetic (EM) analysis, which is CPU intensive, especially for complex systems. As rigorous optimization routines involve repetitive EM simulations, the associated cost may be significant....
-
Design specification management with automated decision-making for reliable optimization of miniaturized microwave components
PublikacjaThe employment of numerical optimization techniques for parameter tuning of microwave components has nowadays become a commonplace. In pursuit of reliability, it is most often carried out at the level of full-wave electromagnetic (EM) simulation models, incurring considerable computational expenses. In the case of miniaturized microstrip circuits, densely arranged layouts with strong cross-coupling effects make EM-driven tuning...
-
Domain segmentation for low-cost surrogate-assisted multi-objective design optimisation of antennas
PublikacjaAbstract: Information regarding the best possible design trade-offs of an antenna structure can be obtained through multiobjective optimisation (MO). Unfortunately, MO is extremely challenging if full-wave electromagnetic (EM) simulation models are used for performance evaluation. Yet, for the majority of contemporary antennas, EM analysis is the only tool that ensures reliability. This study introduces a procedure for accelerated...
-
Expedited Variable-Resolution Surrogate Modeling of Miniaturized Microwave Passives in Confined Domains
PublikacjaDesign of miniaturized microwave components is largely based on computational models, primarily, full-wave electromagnetic (EM) simulations. EM analysis is capable of giving an accurate account for cross-coupling effects, substrate and radiation losses, or interactions with environmental components (e.g., connectors). Unfortunately, direct execution of EM-based design tasks such as parametric optimization or uncertainty quantification,...
-
Rapid Yield Optimization of Miniaturized Microwave Passives by Response Features and Variable-Fidelity EM Simulations
PublikacjaThe operation of high-frequency devices, including microwave passive components, can be impaired by fabrication tolerances but also incomplete knowledge concerning operating conditions (temperature, input power levels) and material parameters (e.g., substrate permittivity). Although the accuracy of manufacturing processes is always limited, the effects of parameter deviations can be accounted for in advance at the design phase...
-
Low-cost performance-driven modelling of compact microwave components with two-layer surrogates and gradient kriging
PublikacjaUtilization of electromagnetic (EM) simulation tools has become indispensable for reliable evaluation of microwave components. As the cost of an individual analysis may already be considerable, the computational overhead associated with EM-driven tasks that require massive simulations (e.g., optimization) may turn prohibitive. One of mitigation methods is the employment of equivalent network models. Yet, they are incapable of accounting...
-
On Reduced-Cost Design-Oriented Constrained Surrogate Modeling of Antenna Structures
PublikacjaDesign of contemporary antenna structures heavily relies on full-wave electromagnetic (EM) simulation models. Such models are essential to ensure reliability of evaluating antenna characteristics, yet, they are computationally expensive and therefore unsuitable for handling tasks that require multiple analyses, e.g., parametric optimization. The cost issue can be alleviated by using fast surrogate models. Conventional data-driven...
-
Rapid and Reliable Re-Design of Miniaturized Microwave Passives by Means of Concurrent Parameter Scaling and Intermittent Local Tuning
PublikacjaRe-design of microwave passive components for the assumed operating frequencies or substrate parameters is an important yet a tedious process. It requires simultaneous tuning of relevant circuit variables, often over broad ranges thereof, to ensure satisfactory performance of the system. If the operating conditions at the available design are distant from the intended ones, local optimization is typically insufficient, whereas...
-
Machine-Learning-Based Global Optimization of Microwave Passives with Variable-Fidelity EM Models and Response Features
PublikacjaMaximizing microwave passive component performance demands precise parameter tuning, particularly as modern circuits grow increasingly intricate. Yet, achieving this often requires a comprehensive approach due to their complex geometries and miniaturized structures. However, the computational burden of optimizing these components via full-wave electromagnetic (EM) simulations is substantial. EM analysis remains crucial for circuit...
-
A Novel Trust-Region-Based Algorithm with Flexible Jacobian Updates for Expedited Optimization of High-Frequency Structures
PublikacjaSimulation-driven design closure is mandatory in the design of contemporary high-frequency components. It aims at improving the selected performance figures through adjustment of the structure’s geometry (and/or material) parameters. The computational cost of this process when employing numerical optimization is often prohibitively high, which is a strong motivation for the development of more efficient methods. This is especially...
-
Expedited Acquisition of Database Designs for Reduced-Cost Performance-Driven Modeling and Rapid Dimension Scaling of Antenna Structures
PublikacjaFast replacement models have been playing an increasing role in high-frequency electronics, including the design of antenna structures. Their role is to improve computational efficiency of the procedures that normally entail large numbers of expensive full-wave electromagnetic (EM) simulations, e.g., parametric optimization or uncertainty quantification. Recently introduced performance-driven modeling methods, such as the nested...
-
Rapid design of miniaturised branch-line couplers through concurrent cell optimisation and surrogate-assisted fine-tuning
PublikacjaIn this study, the authors introduce a methodology for low-cost simulation-driven design optimisation of highly miniaturised branch-line couplers (BLCs). The first stage of their design approach exploits fast concurrent optimisation of geometrically dependent, but electromagnetically isolated cells that constitute a BLC. The cross-coupling effects between the cells are taken into account in the second stage, where a surrogate-assisted...
-
Reduced-cost design closure of antennas by means of gradient search with restricted sensitivity update
PublikacjaDesign closure, i.e., adjustment of geometry parameters to boost the performance, is a challenging stage of antenna design process. Given complexity of contemporary structures, reliable parameter tuning requires numerical optimization and can be executed using local algorithms. Yet, EM-driven optimization is a computationally expensive endeavour and reducing its cost is highly desirable. In this paper, a modification of the trust-region...
-
A structure and design optimization of novel compact microscrip dual-band rat-race coupler with enhanced bandwidth
PublikacjaIn the letter, a topology of a novel compact wideband dual-band rat-race coupler has been presented along with its computationally efficient design optimization procedure. Reduction of the circuit size has been achieved by meandering transmission lines of the conventional circuit. At the same time, the number of independent geometry parameters has been increased so as to secure sufficient flexibility of the circuit, necessary in...
-
Improved Modeling of Microwave Structures Using Performance-Driven Fully-Connected Regression Surrogate
PublikacjaFast replacement models (or surrogates) have been widely applied in the recent years to accelerate simulation-driven design procedures in microwave engineering. The fundamental reason is a considerable—and often prohibitive—CPU cost of massive full-wave electromagnetic (EM) analyses related to solving common tasks such as parametric optimization or uncertainty quantification. The most popular class of surrogates are data-driven...
-
Nested Kriging with Variable Domain Thickness for Rapid Surrogate Modeling and Design Optimization of Antennas
PublikacjaDesign of modern antennas faces numerous difficulties, partially rooted in stringent specifications imposed on both electrical and field characteristics, demands concerning various functionalities (circular polarization, pattern diversity, band-notch operation), but also constraints imposed upon the physical size of the radiators. Conducting the design process at the level of full-wave electromagnetic (EM) simulations, otherwise...
-
Reliable low-cost surrogate modeling and design optimisation of antennas using implicit space mapping with substrate segmentation
PublikacjaAbstract: In this work, a reliable methodology for fast simulation-driven design optimisation of antenna structures is proposed. The authors’ approach exploits implicit space mapping (ISM) technology. To adopt it for handling antenna structures, they introduce substrate segmentation with separate dielectric permittivity value assigned for each segment as ISM preassigned parameters. At the same time, the coarse model for space mapping...
-
Improved-Efficacy Optimization of Compact Microwave Passives by Means of Frequency-Related Regularization
PublikacjaElectromagnetic (EM)-driven optimization is an important part of microwave design, especially for miniaturized components where the cross-coupling effects in tightly arranged layouts make traditional (e.g., equivalent network) representations grossly inaccurate. Efficient parameter tuning requires reasonably good initial designs, which are difficult to be rendered for newly developed structures or when re-design for different operating...
-
Optimal Design of Transmitarray Antennas via Low-Cost Surrogate Modelling
PublikacjaOver the recent years, reflectarrays and transmitarrays have been drawing a considerable attention due to their attractive features, including a possibility of realizing high gain and pencil-like radiation patterns without the employment of complex feeding networks. Among the two, transmitarrays seem to be superior over reflectarrays in terms of achieving high radiation efficiency without the feed blockage. Notwithstanding, the...
-
Low-Cost Modeling of Microwave Components by Means of Two-Stage Inverse/Forward Surrogates and Domain Confinement
PublikacjaFull-wave electromagnetic (EM) analysis is one of the most important tools in the design of modern microwave components and systems. EM simulation permits reliable evaluation of circuits at the presence of cross-coupling effects or substrate anisotropy, as well as for accounting for interactions with the immediate environment. However, repetitive analyses required by EM-driven procedures, such as parametric optimization or statistical...
-
A new approach to a fast and accurate design of microwave circuits with complex topologies
PublikacjaA robust simulation-driven design methodology of microwave circuits with complex topologies has been presented. The general method elaborated is suitable for a wide class of N-port unconventional microwave circuits constructed as a deviation from classic design solutions. The key idea of the approach proposed lies in an iterative redesign of a conventional circuit by a sequential modification and optimisation of its atomic building...
-
Reduced-Cost Two-Level Surrogate Antenna Modeling using Domain Confinement and Response Features
PublikacjaElectromagnetic (EM) simulation tools have become indispensable in the design of contemporary antennas. Still, the major setback of EM-driven design is the associated computational overhead. This is because a single full-wave simulation may take from dozens of seconds up to several hours, thus, the cost of solving design tasks that involve multiple EM analyses may turn unmanageable. This is where faster system representations (surrogates)...
-
Fast Re-Design of Multi-Band Antennas by Means of Orthogonal-Direction Geometry Scaling and Local Parameter Tuning
PublikacjaApplication-driven design of antenna systems fosters a reuse of structures that have proven competitive in terms of their electrical and field performance, yet have to be re-designed for a new application area. In practice, it most often entails relocation of the operating frequencies or bandwidths, which is an intricate endeavor, normally requiring utilization of numerical optimization techniques. If the center frequencies of...
-
Rapid optimization of compact microwave passives using kriging surrogates and iterative correction
PublikacjaDesign of contemporary microwave components is—in a large part—based on full-wave electromagnetic (EM) simulation tools. The primary reasons for this include reliability and versatility of EM analysis. In fact, for many microwave structures, notably compact components, EM-driven parameter tuning is virtually imperative because traditional models (analytical or network equivalents) are unable to account for the cross-coupling effects,...
-
Computationally Efficient Multi-Objective Optimization of and Experimental Validation of Yagi-Uda Antenna
PublikacjaIn this paper, computationally efficient multi-objective optimization of antenna structures is discussed. As a design case, we consider a multi-parameter planar Yagi-Uda antenna structure, featuring a driven element, three directors, and a feeding structure. Direct optimization of the high-fidelity electromagnetic (EM) antenna model is prohibitive in computational terms. Instead, our design methodology exploits response surface...
-
Recent Advances in Accelerated Multi-Objective Design of High-Frequency Structures using Knowledge-Based Constrained Modeling Approach
PublikacjaDesign automation, including reliable optimization of engineering systems, is of paramount importance for both academia and industry. This includes the design of high-frequency structures (antennas, microwave circuits, integrated photonic components), where the appropriate adjustment of geometry and material parameters is crucial to meet stringent performance requirements dictated by practical applications. Realistic design has...
-
Miniaturized uniplanar triple-band slot dipole antenna with folded radiator
PublikacjaA miniaturized uniplanar slot dipole for triple-frequency operation is presented. The antenna consists of a folded slot radiator with an increased number of degrees of freedom that allow for efficient size reduction. Rigorous electromagnetic (EM)-driven design optimization is applied in order to achieve the smallest possible size while maintaining acceptable levels of antenna reflection at the required operating frequencies. The...
-
Two-Stage Variable-Fidelity Modeling of Antennas with Domain Confinement
PublikacjaSurrogate modeling has become the method of choice in solving an increasing number of antenna design tasks, especially those involving expensive full-wave electromagnetic (EM) simulations. Notwithstanding, the curse of dimensionality considerably affects conventional metamodeling methods, and their capability to efficiently handle nonlinear antenna characteristics over broad ranges of the system parameters is limited. Performance-driven...
-
Generalized Formulation of Response Features for Reliable Optimization of Antenna Input Characteristics
PublikacjaElectromagnetic (EM)-driven parameter adjustment has become imperative in the design of modern antennas. It is necessary because the initial designs rendered through topology evolution, parameter sweeping, or theoretical models, are often of poor quality and need to be improved to satisfy stringent performance requirements. Given multiple objectives, constraints, and a typically large number of geometry parameters, the design closure...