Filtry
wszystkich: 10
Wyniki wyszukiwania dla: AIMD
-
Visualizing spatially decomposed intermolecular correlations in the infrared spectra of aprotic liquids
PublikacjaInfrared (IR) spectroscopy is commonly used to study intermolecular interactions in the liquid phase, including solvation phenomena. On the other hand, ab initio molecular dynamics (AIMD) simulations offer the possibility to obtain IR spectra from first principles. Surpassing the experiment, AIMD simulations can deliver additional information on the spatial intermolecular correlations underlying the IR spectrum of the liquid. Although...
-
Solvent Exchange around Aqueous Zn(II) from Ab Initio Molecular Dynamics Simulations
PublikacjaHydrated zinc(II) cations, due to their importance in biological systems, are the subject of ongoing research concerning their hydration shell structure and dynamics. Here, ab initio molecular dynamics (AIMD) simulations are used to study solvent exchange events around aqueous Zn2+, for which observation in detail is possible owing to the considerable length of the generated trajectory. While the hexacoordinated Zn(H2O)62+ is the...
-
Unusual Influence of Fluorinated Anions on the Stretching Vibrations of Liquid Water
PublikacjaInfrared (IR) spectroscopy is a commonly used and invaluable tool in the studies of solvation phenomena in aqueous solutions. Concurrently, ab initio molecular dynamics (AIMD) simulations deliver the solvation shell picture at a molecular detail level and allow for a consistent decomposition of the theoretical IR spectrum into underlying spatial correlations. Here, we demonstrate how the novel spectral decomposition techniques...
-
Hydration of N-Hydroxyurea from Ab Initio Molecular Dynamics Simulations
PublikacjaN-Hydroxyurea (HU) is an important chemotherapeutic agent used as a first-line treatment in conditions such as sickle cell disease and β-thalassemia, among others. To date, its properties as a hydrated molecule in the blood plasma or cytoplasm are dramatically understudied, although they may be crucial to the binding of HU to the radical catalytic site of ribonucleotide reductase, its molecular target. The purpose of this work...
-
The influence of intermolecular correlations on the infrared spectrum of liquid dimethyl sulfoxide
PublikacjaDimethyl sulfoxide (DMSO) is routinely applied as an excellent, water-miscible solvent and chemical reagent. Some of the most important data concerning its liquid structure were obtained using infrared (IR) spectroscopy. However, the actual extent of intermolecular correlations that connect the isolated monomer spectrum to the IR response of the bulk liquid is poorly studied thus far. Using ab initio molecular dynamics (AIMD) simulations,...
-
Effect of urea and glycine betaine on the hydration sphere of model molecules for the surface features of proteins
PublikacjaWater properties may significantly affect protein stability. Osmolytes are compounds that intrinsically affect water in many different ways and thus can influence proteins with this type of indirect mechanism. In this study, we characterize water properties in ternary solutions: model–water–osmolyte, with two model molecules: N-methylacetamide (NMA) and dimethyl sulfoxide (DMSO) and two osmolytes: glycine betaine (TMG)and urea....
-
Unique agreement of experimental and computational infrared spectroscopy: a case study of lithium bromide solvation in an important electrochemical solvent
PublikacjaInfrared (IR) spectroscopy is a widely used and invaluable tool in the studies of solvation phenomena in electrolyte solutions. Using state-of-the-art chemometric analysis of a spectral series measured in a concentration-dependent manner, the spectrum of the solute-affected solvent can be extracted, providing a detailed view of the structural and energetic states of the solvent molecules influenced by the solute. Concurrently,...
-
DMSO hydration redefined: Unraveling the hydrophobic hydration of solutes with a mixed hydrophilic–hydrophobic characteristic
PublikacjaHydrophobic hydration of solutes with a mixed hydrophilic--hydrophobic characteristics is still poorly understood. This is because both experimental and theoretical methods find it difficult to see the ice-like water structure around the nonpolar solute groups, unlike hydrogen bonds with the hydrophilic groups. In order to unravel this problem, we have investigated DMSO hydration by means of infrared spectroscopy and theoretical...
-
Molecular level interpretation of excess infrared spectroscopy
PublikacjaInfrared (IR) spectroscopy is an invaluable tool in studying intermolecular interactions in solvent mixtures. The deviation of the IR spectrum of a mixture from the spectra of its pure components is a sensitive measure of the non-ideality of solutions and the modulation of intermolecular interactions introduced by mutual influence of the components. Excess IR spectroscopy, based on the established notion of excess thermodynamic...
-
Subrahmanyam Sappati Ph. D
OsobyTenure track faculty position at the Gdansk University of Technology, Gdansk, Poland. (Nobelium grant fellow)! Working on the behavior of short hydrogen bonds SB both in-ground and excited state in crystals, aqueous & bio environ