Wyniki wyszukiwania dla: BONE, FEM,
-
Young’s modulus distribution in the FEM models of bone tissue
PublikacjaThis paper presents how differences of Young’s modulus in adjacent finite elements typical for organic materials such as bone tissue, influence stress calculating. Emphasizing high computational cost of variable Young’s modulus in parts of the model, where the number of finite elements has been raised, the authors wants to prove that new model of finite element which has variable Young’s modulus in its volume needs to be created....
-
Cost-Effective and Sufficiently Precise Integration Method Adapted to the FEM Calculations of Bone Tissue
PublikacjaThe technique of Young’s modulus variation in the finite element is not spread in biomechanics. Our future goal is to adapt this technique to bone tissue strength calculations. The aim of this paper is to present the necessary studies of the element’s integration method that takes into account changes in material properties. For research purposes, a virtual sample with the size and distribution of mechanical properties similar...
-
A new finite element with variable Young's modulus
PublikacjaThe Finite Element Method (FEM) is a numerical technique that is well-established in the field of engineering. However, in biological sciences, it is justtaking its first steps. Bone tissue is an example of biological material which isexposed to high loads in its natural environment. Practically every movementof the body results in changing stress levels in the bone. Nature copes with thisvery well but when human intervention is...
-
ESTIMATION OF YOUNG`S MODULUS OF THE POROUS TITANIUM ALLOY WITH THE USE OF FEM PACKAGE
PublikacjaPorous structures made of metal or biopolymers with a structure similar in shape and mechanical properties to human bone can easily be produced by stereolithographic techniques, e.g. selective laser melting (SLM). Numerical methods, like Finite Element Method (FEM) have great potential in testing new scaffold designs, according to their mechanical properties before manufacturing, i.e. strength or stiffness. An example of such designs...
-
Nonlinear dynamic analysis of the pure “buckling” mechanism during blow-out trauma of the human orbit
PublikacjaConsidering the interplay between orbital bones and intraorbital soft tissues, commonly accepted patterns of the blow-out type of trauma within the human orbit require more thorough investigation to assess the minimal health-threatening impact value. Two different three-dimensional finite element method (FEM) models of the human orbital region were developed to simulate the pure “buckling” mechanism of orbital wall fracture in...
-
On the necessity of experimental verification of numerical results in biomedical applications
PublikacjaPorous structures made of metal or biopolymers with a structure similar in shape and mechanical properties to human bone can be easily produced by stereolitography techniques, e.g. selective laser melting (SLM). Numerical techniques, like finite element method (FEM) have great potential in testing new, even the most sophisticated designs, according to their mechanical properties, i.e. strength or stiffness. However, due to different...
-
Materials Design for the Titanium Scaffold Based Implant
PublikacjaThe main objective of here presented research is a design the scaffold/porous titanium(Ti) alloy based composite material demonstrating better biocompatibility, longer lifetime andbioactivity behaviour for load-bearing implants. The development of such material is proposed bymaking a number of consecutive tasks. Modelling the mechanical, biomechanical and biologicalbehavior of porous titanium structure and an elaboration of results...
-
Materials Design for the Titanium Scaffold Based Implant
PublikacjaThe main objective of here presented research is a design the scaffold/porous titanium(Ti) alloy based composite material demonstrating better biocompatibility, longer lifetime andbioactivity behaviour for load-bearing implants. The development of such material is proposed bymaking a number of consecutive tasks. Modelling the mechanical, biomechanical and biologicalbehavior of porous titanium structure and an elaboration of results...
-
Destruction of shell structures under the dynamic load on the human skull trauma basis
PublikacjaThe main aim of this work is to investigate patterns of potential orbital bone fractures due to mechanical injuries. The solution of the main problem is followed by analysis of several testing examples having straight correlation with civil engineering structures, in which materials of wide range of stiffness are applied. To solve the main problem, the three-dimensional finite element method (FEM) model of the orbital region has...
-
FEM approach to modeling of an irregular trabecular structure
PublikacjaThe aim of the study is elaboration of a method for creating irregular scaffolds that can be used to model the behaviour of trabecular bone placed in the proximal epiphysis of the femur. The scope of the study encompasses creating six numerical models of irregular scaffolds (two solid irregular scaffolds, two shell irregular scaffolds and two shell irregular scaffolds with fortification) and performing numerical analysis of the...
-
The initial FEM model of the dome assembled in SOFiSTiK FEA (2020) software
Dane BadawczeThis dataset consists of an archive with the (selected) files of the initial FEM model of the dome assembled in SOFiSTiK FEA (2020) software.
-
Key results from the numerical FEM analysis of the imperfect dome's state of displacements
Dane BadawczeThis dataset consists of an XLS file with the key results from the numerical FEM analysis of the imperfect dome's state of displacements.
-
Finite element models used in diagnostics of transverse cracks in bridge approach pavement
Dane BadawczeTransverse cracks in the asphalt pavement were observed on bridge structures next to single-module expansion joints with a 5 meter approach slab set at the depth of 1 m. The finite element (FE) models of the approach pavement were created to investigate the reasons of premature cracking and crack initiation mechanism over the back edge of the abutment...
-
Wiktoria Wojnicz dr hab. inż.
OsobyDSc in Mechanics (in the field of Biomechanics) - Lodz Univeristy of Technology, 2019 PhD in Mechanics (in the field of Biomechanics) - Lodz Univeristy of Technology, 2009 (with distinction) Publikacje z listy MNiSW (2009 - ) Wojnicz W., Wittbrodt E., Analysis of muscles' behaviour. Part I. The computational model of muscle. Acta of Bioengineering and Biomechanics, Vol. 11, No.4, 2009, p. 15-21 Wojnicz W., Wittbrodt E., Analysis...
-
The dataset of coupling coefficients for rotating receiver of multicoil dynamic wireless power transfer system
Dane BadawczeThe provided dataset is part of the simulation results shown in related journal paper "Optimal Rotating Receiver Angles Estimation for Multicoil Dynamic Wireless Power Transfer".
-
Tensile curve of E grade steel for shipbuilding
Dane BadawczeIn the shipbuilding industry, the risk of brittle fractures developing in constructions is limited by employing certified materials of specific impact strength, determined using the Charpy method (for a given design temperature) and by exercising control over the welding processes (technology qualification, supervision of production, tests of non-destructive...
-
Validation of lumbar spine finite element model
Dane BadawczeThe functional biomechanics of the lumbar spine have been better understood by finite element method (FEM) simulations. However, there are still areas where the behavior of soft tissues can be better modeled or described in a different way. The purpose of this research is to develop and validate a lumbar spine section intended for biomechanical research....