Filtry
wszystkich: 4326
wybranych: 444
-
Katalog
- Publikacje 3252 wyników po odfiltrowaniu
- Czasopisma 38 wyników po odfiltrowaniu
- Osoby 105 wyników po odfiltrowaniu
- Wynalazki 3 wyników po odfiltrowaniu
- Projekty 5 wyników po odfiltrowaniu
- Laboratoria 3 wyników po odfiltrowaniu
- Zespoły Badawcze 5 wyników po odfiltrowaniu
- Aparatura Badawcza 26 wyników po odfiltrowaniu
- Kursy Online 322 wyników po odfiltrowaniu
- Wydarzenia 8 wyników po odfiltrowaniu
- Dane Badawcze 559 wyników po odfiltrowaniu
Filtry wybranego katalogu
Wyniki wyszukiwania dla: M-XENE
-
XPS data of MXene catalyst
Dane BadawczeData contain results from XPS measurement of the Ti3C2Tx MXenes produced via acidic etching aluminum from MAX Phase (Ti3C2-Al-Ti3C2-Al-Ti3C2) using 48% HF etching agent (MXene HF). The X-ray spectroscopy (XPS) measurements were conducted using Mg Ka (hn = 1253.6 eV) radiation in a Prevac (Poland) system equipped with a Scienta SES 2002 (Sweden) electron...
-
SEM images of MXene catalysts
Dane BadawczeData contain results SEM measurements of the Ti3C2Tx MXenes produced via acidic etching aluminum from MAX Phase (Ti3C2-Al-Ti3C2-Al-Ti3C2) using different etching agents, HF/HCl and HF/H2SO4 with different weight ratios (1:3, 1:4, and 1:5). The samples were labeled as MXene HF/HCl X:Y and MXene HF/H2SO4 X:Y, where X:Y means the acids weight ratios. MAX...
-
ArchBGal32cB 441Glu mutein gene analysis dataset
Dane Badawcze -
Physicochemical and photocatalytic data of TiO2/MXene/MnFe2O4 photocatalysts
Dane BadawczeThis dataset includes data regarding the physicochemical properties (i.e. XRD, DR/UV-vis, TEM images, photoluminescence) and photocatalytic activity of TiO2/MXene/MnFe2O4 photocatalysts. The data comprise the results of the photocatalytic reaction of carbamazepine and ibuprofen degradation.
-
TRNA-Leu (UUR) gene haplotypes observed in canine mammary gland tumours and its deleterious effect assessment according to the comparative analysis with TRNL1 human gene
Dane BadawczeThe aetiology and pathogenesis of many canine tumours are likely to be similar to cancers found in humans. This study aimed to present a plausible link between changes in tRNA-Leu (UUR) gene and the carcinogenesis process in dogs with mammary gland tumours. The whole mitochondrial DNA (mtDNA) isolated from blood and tumour tissues of 13 dogs with malig-nant...
-
The XAS spectra of O-K edges, M-L edges and Ce-M edges in Ce0.9M0.1O2
Dane BadawczeThe dataset consists of XAS spectra of O-K edges, M-L edges of Ce0.9M0.1O2 (where M=Mn, Fe, Co, Ni, Cu) synthesised by reverse microemulsion method. XAS spectra were collected at PIRX beamline in SOLARIS National Synchrotron Radiation Centre. Measurements were perfomed under ultra high vacuum in total electron yield (TEY) mode.
-
Dataset of non-isomorphic graphs of the coloring types (K3,Km;n), 2<m<7, 1<n<R(3,m)
Dane BadawczeFor K3 and Km graphs, a coloring type (K3,Km;n) is such an edge coloring of the full Kn graph, which does not have the K3 subgraph in the first color (representing by no edges in the graph) or the Km subgraph in the second color (representing by edges in the graph).The Ramsey number R(3,m) is the smallest natural number n such that for any edge coloring...
-
GC Chromatograms for isomerization of alpha-pinene
Dane BadawczeData contain results of the catalytic tests for the isomerization of alpha-pinene for the Ti3C2Tx MXenes produced via acidic etching aluminum from MAX Phase (Ti3C2-Al-Ti3C2-Al-Ti3C2) using different etching agents, HF/HCl and HF/H2SO4 with different weight ratios (1:3, 1:4, and 1:5). The samples were labeled as MXene HF/HCl X:Y and MXene HF/H2SO4 X:Y,...
-
Impedance spectra of ZnO varistor type 440 model A ver. M
Dane BadawczeThe impedance spectrum of high-voltage ZnO varistor obtained using FRA EIS impedance spectrosocpy measurement method. The 1V sinusoidal excitation was used. The frequency range was chosen from 10 kHz down to 100 uHz. The object under test and the measuring instrument were placed in a Faraday cage due to high impedance of the object. The data was acquired...
-
Impedance spectra of ZnO varistor type 280 model A ver. M
Dane BadawczeThe impedance spectrum of high-voltage ZnO varistor obtained using FRA EIS impedance spectrosocpy measurement method. The 1V sinusoidal excitation was used. The frequency range was chosen from 10 kHz down to 100 uHz. The object under test and the measuring instrument were placed in a Faraday cage due to high impedance of the object. The data was acquired...
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -10 m, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -100 m, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -50 m, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -10 m, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -20 m, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
UAV Survey Images - orthophotomap - Gdynia Chwaszczyno - PH4 - AGL 50 m
Dane BadawczeDataset description: Raw images from photogrammetric survey. Object: Parking place near by Gdynia Chwaszczyno district Location: Gdynia, Pomerania, PolandDrone type: DJI Phantom 4 ProFlight plan: Single GridTarget Product: OrthophotoDate: 11.07.2019Direct georeferencing: yesMetadata data: yes/GPSGCP: Yes - Description and position includedGCP Quality:...
-
UAV Survey Images - orthophotomap - Gdynia Chwaszczyno - MP1 - AGL 50 m
Dane BadawczeDataset description: Raw images from photogrammetric survey. Object: Parking place near by Gdynia Chwaszczyno district Location: Gdynia, Pomerania, PolandDrone type: DJI Mavic Pro 1Flight plan: Single GridTarget Product: OrthophotoDate: 11.07.2019Direct georeferencing: yesMetadata data: yes/GPSGCP: Yes - Description and position includedGCP Quality:...
-
UAV Survey Images - orthophotomap - Gdynia Chwaszczyno - MP1 - AGL 100 m
Dane BadawczeDataset description: Raw images from photogrammetric survey. Object: Parking place near by Gdynia Chwaszczyno district Location: Gdynia, Pomerania, PolandDrone type: DJI Mavic Pro 1Flight plan: Single GridTarget Product: OrthophotoDate: 11.07.2019Direct georeferencing: yesMetadata data: yes/GPSGCP: Yes - Description and position includedGCP Quality:...
-
UAV Survey Images - orthophotomap - Gdynia Chwaszczyno - PH4 - AGL 100 m
Dane BadawczeDataset description: Raw images from photogrammetric survey. Object: Parking place near by Gdynia Chwaszczyno district Location: Gdynia, Pomerania, PolandDrone type: DJI Phantom 4 ProFlight plan: Single GridTarget Product: OrthophotoDate: 11.07.2019Direct georeferencing: yesMetadata data: yes/GPSGCP: Yes - Description and position includedGCP Quality:...
-
Impedance spectra of ZnO varistor type 680 model A M ver. 93
Dane BadawczeThe impedance spectrum of high-voltage ZnO varistor obtained using FRA EIS impedance spectrosocpy measurement method. The 1V sinusoidal excitation was used. The frequency range was chosen from 10 kHz down to 100 uHz. The object under test and the measuring instrument were placed in a Faraday cage due to high impedance of the object. The data was acquired...
-
Impedance spectra of ZnO varistor type 680 model A M ver. xx
Dane BadawczeThe impedance spectrum of high-voltage ZnO varistor obtained using FRA EIS impedance spectrosocpy measurement method. The 1V sinusoidal excitation was used. The frequency range was chosen from 10 kHz down to 100 uHz. The object under test and the measuring instrument were placed in a Faraday cage due to high impedance of the object. The data was acquired...
-
X-ray diffraction patterns of BaCe0.6Zr0.2Y0.1M0.1O3-δ (M = Fe, Pr, Tb)
Dane BadawczeThe dataset consists of three raw X-ray diffraction (XRD) files collected using a Phillips X’Pert Pro diffractometer (CuKα radiation (𝜆 = 1.541 Å), under 40 kV and 30 mA). The diffraction patterns of BaCe0.6Zr0.2Y0.1Fe0.1O3-δ (BCZYFe), BaCe0.6Zr0.2Y0.1Pr0.1O3-δ (BCZYPr), and BaCe0.6Zr0.2Y0.1Tb0.1O3-δ (BCZYTb) were collected at room temperature. Collected...
-
Impedance spectra of ZnO varistor type 280 model O M ver. 89
Dane BadawczeThe impedance spectrum of high-voltage ZnO varistor obtained using FRA EIS impedance spectrosocpy measurement method. The 1V sinusoidal excitation was used. The frequency range was chosen from 10 kHz down to 100 uHz. The object under test and the measuring instrument were placed in a Faraday cage due to high impedance of the object. The data was acquired...
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 100 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 90 deg, j = 45 deg, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters -Be = 50 mT, I = 70 deg, z = 10 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 100 deg, j = 90 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters- Be = 50 mT, I = 70 deg, z = 100 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 90 deg, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 100 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 90 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 90 deg, j = 45 deg, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.