Filtry
wszystkich: 54104
wybranych: 273
-
Katalog
- Publikacje 25841 wyników po odfiltrowaniu
- Czasopisma 831 wyników po odfiltrowaniu
- Konferencje 16 wyników po odfiltrowaniu
- Wydawnictwa 89 wyników po odfiltrowaniu
- Osoby 2298 wyników po odfiltrowaniu
- Wynalazki 247 wyników po odfiltrowaniu
- Projekty 598 wyników po odfiltrowaniu
- Laboratoria 39 wyników po odfiltrowaniu
- Zespoły Badawcze 107 wyników po odfiltrowaniu
- Aparatura Badawcza 30 wyników po odfiltrowaniu
- Kursy Online 8644 wyników po odfiltrowaniu
- Wydarzenia 644 wyników po odfiltrowaniu
- Oferty 1 wyników po odfiltrowaniu
- Dane Badawcze 14719 wyników po odfiltrowaniu
Filtry wybranego katalogu
Wyniki wyszukiwania dla: architektura wspolczesna wrazen i emocji
-
Structure of the register of immovable monuments in terms of the type of architectural monuments by voivodeship - comparison of 2003 and 2024
Dane BadawczeThe following dataset compares the structure of the register of immovable monuments in Poland regarding the type of architectural monuments by voivodeship for 2003 and 2024. The dataset has been compiled based on the data in the Report analysing the state of immovable monuments (the report was prepared in 2004 based on data collected by provincial conservators...
-
Structure of the register of immovable monuments in terms of the number of architectural monuments by type - comparison of 2003 and 2024
Dane BadawczeThe following dataset compares the structure of the register of immovable monuments in Poland regarding the number of architectural monuments by type for 2003 and 2024. The included types contain the following ones: sacred, defensive, public, castles, palaces, manors, parks, residential, farmhouses, industrial, cemeteries and others. The dataset has...
-
Structure of the register of immovable monuments in terms of the number of architectural monuments by type - comparison of 2003 and 2016
Dane BadawczeThe following dataset compares the structure of the register of immovable monuments in Poland regarding the number of architectural monuments by type for 2003 and 2016. The included types contain the following ones: sacred, defensive, public, castles, palaces, manors, parks, residential, farmhouses, industrial, cemeteries and others. The dataset has...
-
Inventory of the historic fences in Gdańsk-Wrzeszcz district, stage between the 2010-2015.
Dane BadawczeThe data presents architectural survey and inventory documentation of the historic fences in Gdańsk-Wrzeszcz district, stage from the period between 2010-2015. The survey and inventory works of architectural details at the turn of the 19th and 20th centuries are documented in the form of inventory drawings prepared by students of the Faculty of Architecture,...
-
Miedzyborz 2021 - video data I - pedestrian, bicycles, vehicles
Dane BadawczeMiedzyborz 2021 - video data - pedestrian, bicycles, vehicles
-
state aid for research, development and innovation ( R+D+I)
Dane BadawczeThe dataset encompasses a choice of important legal acts, a list of selected Polish bibliography, some important individual EC decisions issued on the topic of state aid for research, development, and innovation during the budgetary periods 2007-2013 and 2014-2020. Thanks to that the reader gets the possibility to acquire basic knowledge on the abovementioned...
-
Krotoszyn 2021 - video data I - pedestrian, bicycles, vehicles
Dane BadawczeKrotoszyn 2021 - video data - pedestrian, bicycles, vehicles
-
Gostyn 2021 - video data I - pedestrian, bicycles, vehicles
Dane BadawczeGostyn 2021 - video data - pedestrian, bicycles, vehicles
-
Case Study NEB Atlas / part I - 3D Models / Brunnshög, Lund
Dane BadawczeThe data presents the results of work on the analysis of contemporary neighbourhoods. The aim of this part of the research was to create a digital model - a simplified digital twin - for selected parts of housing estates already realised in various cities in Europe. This group presents a model for a fragment of the Brunnshög district in Lund, Sweden....
-
Case Study NEB Atlas / part I - 3D Models / King's Cross, London
Dane BadawczeThe data presents the results of work on the analysis of contemporary neighbourhoods. The aim of this part of the research was to create a digital model - a simplified digital twin - for selected parts of housing estates already realised in various cities in Europe. This group presents a model for a fragment of the King's Cross, London, UK. The students...
-
Source code - AI models (MLM1-5 - series I-III - QNM opt)
Dane BadawczeSource code - AI models (MLM1-5 - series I-III - QNM opt) for the paper "Computational Complexity and Its Influence on Concrete Compressive Strength Prediction Capabilities of Machine Learning Models for Concrete Mix Design Support" accepted for publication.
-
Gdańsk University of Technology graduates’ self-assessment of selected digital competencies by gender – the year 2017, part I
Dane BadawczeThe dataset includes data from the survey on the Gdańsk University of Technology graduates' from the year 2017 on their self-assessment of selected digital competencies by gender. The survey was conducted in 2019, two years after the respondents obtained graduate status. The research sample included 1594 respondents. To summarize, in general, respondents...
-
Gdańsk University of Technology graduates’ self-assessment of selected digital competencies by gender – the year 2018, part I
Dane BadawczeThe dataset includes data from the survey on the Gdańsk University of Technology graduates' from the year 2018 on their self-assessment of selected digital competencies by gender. The survey was conducted in 2020, two years after the respondents obtained graduate status. The research sample included 1315 respondents. To summarize, in general, respondents...
-
Gdańsk University of Technology graduates’ self-assessment of selected digital competencies by gender – the year 2016, part I
Dane BadawczeThe dataset includes data from the survey on the Gdańsk University of Technology graduates' from the year 2016 on their self-assessment of selected digital competencies by gender. The survey was conducted in 2018, two years after the respondents obtained graduate status. The research sample included 1947 respondents. To summarize, in general, respondents...
-
Gdańsk University of Technology graduates’ self-assessment of selected digital competencies by gender – the year 2017, part I
Dane BadawczeThe dataset includes data from the survey on the Gdańsk University of Technology graduates' from the year 2017 on their self-assessment of selected digital competencies by gender. The survey was conducted in 2019, two years after the respondents obtained graduate status. The research sample included 1594 respondents. To summarize, in general, respondents...
-
Gdańsk University of Technology graduates’ self-assessment of selected digital competencies by gender – the year 2016, part I
Dane BadawczeThe dataset includes data from the survey on the Gdańsk University of Technology graduates' from the year 2016 on their self-assessment of selected digital competencies by gender. The survey was conducted in 2018, two years after the respondents obtained graduate status. The research sample included 1947 respondents. To summarize, in general, respondents...
-
Gdańsk University of Technology graduates’ self-assessment of selected digital competencies by gender – the year 2018, part I
Dane BadawczeThe dataset includes data from the survey on the Gdańsk University of Technology graduates' from the year 2018 on their self-assessment of selected digital competencies by gender. The survey was conducted in 2020, two years after the respondents obtained graduate status. The research sample included 1315 respondents. To summarize, in general, respondents...
-
Studies on the building typology, Kartuzy case study, March 2020
Dane BadawczeThe data presents results of work within the studies on the building typology, Kartuzy case study, study proposal from March 2020. The goal of the process was to identify the basic types of urban structure of the area and to analyse them in terms of location, connections with the neighbourhood, basic and social functions, population density, building...
-
Studies on the building typology, Dolny Sopot district case study, March 2020
Dane BadawczeThe data presents results of work within the studies on the building typology, Dolny Sopot district case study, study proposal from March 2020. The goal of the process was to identify the basic types of urban structure of the area and to analyse them in terms of location, connections with the neighbourhood, basic and social functions, population density,...
-
Studies on the building typology, Gdańsk-Przymorze Małe district case study, March 2020
Dane BadawczeThe data presents results of work within the studies on the building typology, Gdańsk-Przymorze Małe district case study, study proposal from March 2020. The goal of the process was to identify the basic types of urban structure of the area and to analyse them in terms of location, connections with the neighbourhood, basic and social functions, population...
-
Studies on the building typology, Gdańsk-Oliwa district case study, March 2020
Dane BadawczeThe data presents results of work within the studies on the building typology, Gdańsk-Stara Oliwa district case study, study proposal from March 2020. The goal of the process was to identify the basic types of urban structure of the area and to analyse them in terms of location, connections with the neighbourhood, basic and social functions, population...
-
Studies on the building typology, Gdańsk-Brzeźno district case study, March 2020
Dane BadawczeThe data presents results of work within the studies on the building typology, Gdańsk-Brzeźno district case study, study proposal from March 2020. The goal of the process was to identify the basic types of urban structure of the area and to analyse them in terms of location, connections with the neighbourhood, basic and social functions, population...
-
Studies on the building typology, Gdańsk-Nowy Port district case study, March 2020
Dane BadawczeThe data presents results of work within the studies on the building typology, Gdańsk-Stary Nowy Port district case study, study proposal from March 2020. The goal of the process was to identify the basic types of urban structure of the area and to analyse them in terms of location, connections with the neighbourhood, basic and social functions, population...
-
Studies on the building typology, Gdynia-Wzgórze św. Maksymiliana district case study, March 2020
Dane BadawczeThe data presents results of work within the studies on the building typology, Gdynia-Wzgórze św. Maksymiliana district case study, study proposal from March 2020. The goal of the process was to identify the basic types of urban structure of the area and to analyse them in terms of location, connections with the neighbourhood, basic and social functions,...
-
Studies on the building typology, Gdańsk-Wrzeszcz district case study, Kościuszki street, March 2020
Dane BadawczeThe data presents results of work within the studies on the building typology, Gdańsk-Wrzeszcz district case study, Kościuszki street, study proposal from March 2020. The goal of the process was to identify the basic types of urban structure of the area and to analyse them in terms of location, connections with the neighbourhood, basic and social functions,...
-
Studies on the building typology, Gdańsk-Wrzeszcz district case study, Matejki street, Wajdeloty street, Saperów street, March 2020
Dane BadawczeThe data presents results of work within the studies on the building typology, Gdańsk-Wrzeszcz district case study,Matejki street, Wajdeloty street, Saperów street, study proposal from March 2020. The goal of the process was to identify the basic types of urban structure of the area and to analyse them in terms of location, connections with the neighbourhood,...
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -10 m, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -100 m, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -50 m, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -10 m, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -20 m, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 100 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 90 deg, j = 45 deg, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters -Be = 50 mT, I = 70 deg, z = 10 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 100 deg, j = 90 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters- Be = 50 mT, I = 70 deg, z = 100 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 90 deg, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 100 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.