Bimodal Emotion Recognition Based on Vocal and Facial Features - Publikacja - MOST Wiedzy

Wyszukiwarka

Bimodal Emotion Recognition Based on Vocal and Facial Features

Abstrakt

Emotion recognition is a crucial aspect of human communication, with applications in fields such as psychology, education, and healthcare. Identifying emotions accurately is challenging, as people use a variety of signals to express and perceive emotions. In this study, we address the problem of multimodal emotion recognition using both audio and video signals, to develop a robust and reliable system that can recognize emotions even when one modality is absent. To achieve this goal, we propose a novel architecture based on well-designed feature extractors for each modality and use model-level fusion based on a TFusion block to combine the information from both sources. To be more efficient in real-world scenarios, we trained our model on a compound dataset consisting of RAVDESS, RML, and eNTERFACE'05. It is then evaluated and compared to the state-of-the-art models. We find that our approach performs close to the modern solutions and can recognize emotions accurately when one of the modalities is missing. Additionally, we have developed a real-time emotion recognition application as a part of this work.

Cytowania

  • 1

    CrossRef

  • 0

    Web of Science

  • 2

    Scopus

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Aktywność konferencyjna
Typ:
publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
Język:
angielski
Rok wydania:
2023
Opis bibliograficzny:
Woźniak M., Sakowicz M., Ledwosiński K., Rzepkowski J., Czapla P., Zaporowski S.: Bimodal Emotion Recognition Based on Vocal and Facial Features// / : , 2023,
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.procs.2023.10.247
Źródła finansowania:
Weryfikacja:
Politechnika Gdańska

wyświetlono 66 razy

Publikacje, które mogą cię zainteresować

Meta Tagi