Emotion Recognition from Physiological Channels Using Graph Neural Network - Publikacja - MOST Wiedzy

Wyszukiwarka

Emotion Recognition from Physiological Channels Using Graph Neural Network

Abstrakt

In recent years, a number of new research papers have emerged on the application of neural networks in affective computing. One of the newest trends observed is the utilization of graph neural networks (GNNs) to recognize emotions. The study presented in the paper follows this trend. Within the work, GraphSleepNet (a GNN for classifying the stages of sleep) was adjusted for emotion recognition and validated for this purpose. The key assumption of the validation was to analyze its correctness for the Circumplex model to further analyze the solution for emotion recognition in the Ekman modal. The novelty of this research is not only the utilization of a GNN network with GraphSleepNet architecture for emotion recognition, but also the analysis of the potential of emotion recognition based on differential entropy features in the Ekman model with a neutral state and a special focus on continuous emotion recognition during the performance of an activity The GNN was validated against the AMIGOS dataset. The research shows how the use of various modalities influences the correctness of the recognition of basic emotions and the neutral state. Moreover, the correctness of the recognition of basic emotions is validated for two configurations of the GNN. The results show numerous interesting observations for Ekman’s model while the accuracy of the Circumplex model is similar to the baseline methods.

Cytowania

  • 1 1

    CrossRef

  • 0

    Web of Science

  • 1 0

    Scopus

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
SENSORS nr 22,
ISSN: 1424-8220
Język:
angielski
Rok wydania:
2022
Opis bibliograficzny:
Wierciński T., Rock M., Zwierzycki R., Zawadzka T., Zawadzki M.: Emotion Recognition from Physiological Channels Using Graph Neural Network// SENSORS -Vol. 22,iss. 8 (2022), s.2980-
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/s22082980
Źródła finansowania:
  • IDUB
Weryfikacja:
Politechnika Gdańska

wyświetlono 155 razy

Publikacje, które mogą cię zainteresować

Meta Tagi