Sperm segmentation and abnormalities detection during the ICSI procedure using machine learning algorithms
Abstrakt
(1) About 15-20% of couples struggle with the problem of infertility. 30 to 40% of these cases are caused by abnormalities in the structure and motility of sperm. Sometimes the only possibility for such people is to use the procedure of artificial insemination. CASA systems are used to increase the efficiency of this procedure by selecting the appropriate sperm cell. (2) This paper presents an approach to the sperm classification on the basis of its entire structure analysis, including flagella - often poorly visible and therefore ignored in the CASA systems element. The training of the Mask R-CNN architecture was performed on 2 publicly available and one specially created for this purpose sperm database. A 14-element feature vector was also proposed for the classification of 4 classes of typical head defects (amorphous, normal, tapered and pyriform) by the Support Vector Machine. (3) The sperm head (mAP 94.28%) and the whole flagellum (mAP 90.29%) were successfully detected. However, the flagella segmentation results were significantly lower (50.88%) than that the head segmentation (88.32%). Classification with SVM scored 82% accuracy. (4) Research has shown that segmentation and the use of a simple SVM classifier allow for quite good results in the classification of sperm defects. However, it is important to develop a larger whole sperm database, to improve the segmentation results.
Cytowania
-
5
CrossRef
-
0
Web of Science
-
7
Scopus
Autorzy (6)
Cytuj jako
Pełna treść
pełna treść publikacji nie jest dostępna w portalu
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Aktywność konferencyjna
- Typ:
- publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
- Język:
- angielski
- Rok wydania:
- 2022
- Opis bibliograficzny:
- Frączek A., Karwowska G., Miler M., Liss J., Węsierska A., Mazur-Milecka M.: Sperm segmentation and abnormalities detection during the ICSI procedure using machine learning algorithms// / : , 2022,
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1109/hsi55341.2022.9869511
- Źródła finansowania:
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 148 razy
Publikacje, które mogą cię zainteresować
Learning sperm cells part segmentation with class-specific data augmentation
- M. Jankowski,
- E. Lewandowska,
- H. Talbot
- + 2 autorów