Abstrakt
Deployment of different techniques of deep learning including Convolutional Neural Networks (CNN) in image classification systems has accomplished outstanding results. However, the advantages and potential impact of such a system can be completely negated if it does not reach a target accuracy. To achieve high classification accuracy with low variance in medical image classification system, there is needed the large size of the training data set with suitable quality score. This paper presents a study on the use of various consistency checking methods to refine the quality of annotations. It is assumed that tagging was done by volunteers (crowd-sourcing model). The aim of this work was to evaluate the fitness of this approach in the medical field and the usefulness of our innovative web tool designed to facilitate large-scale annotation of magnetic resonance (MR) images, as well as the accuracy of crowd-source assessment using this tool, comparing to expert classification. We present the methodology followed to annotate the collection of kidney MR scans. All of the 156 images were acquired from the Medical University of Gdansk. Two groups of students (with and without medical educational background) and three nephrologists were engaged. This research supports the thesis that some types of MR image annotations provided by naive individuals are omparable to expert annotation, but this process could be shortened in time. Furthermore, it is more costeffective in the simultaneous preservation of image analysis accuracy. With pixel-wise majority voting, it was possible to create crowd-sourced organ segmentations that match the quality of those created by individual medical experts (mAP up to 94% +/-3.9%).
Cytowania
-
1
CrossRef
-
0
Web of Science
-
0
Scopus
Autorzy (2)
Cytuj jako
Pełna treść
pełna treść publikacji nie jest dostępna w portalu
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Aktywność konferencyjna
- Typ:
- publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
- Język:
- angielski
- Rok wydania:
- 2021
- Opis bibliograficzny:
- Dziubich T., Cychnerski J.: Segmentation Quality Refinement in Large-Scale Medical Image Dataset with Crowd-Sourced Annotations// / : , 2021,
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/978-3-030-85082-1_19
- Źródła finansowania:
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 157 razy
Publikacje, które mogą cię zainteresować
Medical Image Dataset Annotation Service (MIDAS)
- B. Klaudel,
- A. Obuchowski,
- B. Rydziński
- + 4 autorów
Active Annotation in Evaluating the Credibility of Web-Based Medical Information: Guidelines for Creating Training Data Sets for Machine Learning
- A. Nabożny,
- B. Balcerzak,
- A. Wierzbicki
- + 2 autorów