Assessment of the Accuracy of Determining the Angular Position of the Unmanned Bathymetric Surveying Vehicle Based on the Sea Horizon Image - Publication - MOST Wiedzy


Assessment of the Accuracy of Determining the Angular Position of the Unmanned Bathymetric Surveying Vehicle Based on the Sea Horizon Image


The paper presents the results of research on assessing the accuracy of angular position measurement relative to the sea horizon using a camera mounted on an unmanned bathymetric surveying vehicle of the Unmanned Surface Vehicle (USV) or Unmanned Aerial Vehicle (UAV) type. The first part of the article presents the essence of the problem. The rules of taking the angular position of the vehicle into account in bathymetric surveys and the general concept of the two-camera tilt compensator were described. The second part presents a mathematical description of the meters characterizing a resolution and a mean error of measurements, made on the base of the horizon line image, recorded with an optical system with a Complementary Metal-Oxide Semiconductor (CMOS) matrix. The phenomenon of the horizon line curvature in the image projected onto the matrix that appears with the increase of the camera height has been characterized. The third part contains an example of a detailed analysis of selected cameras mounted on UAVs manufactured by DJI, carried out using the proposed meters. The obtained results including measurement resolutions of a single-pixel and mean errors of the horizon line slope measurement were presented in the form of many tables and charts with extensive comments. The final part presents the general conclusions from the performed research and a proposal of directions for their further development.


  • 2


  • 2

    Web of Science

  • 2


Authors (4)


artykuły w czasopismach
Published in:
SENSORS no. 19, pages 1 - 22,
ISSN: 1424-8220
Publication year:
Bibliographic description:
Naus K., Marchel Ł., Szymak P., Nowak A.: Assessment of the Accuracy of Determining the Angular Position of the Unmanned Bathymetric Surveying Vehicle Based on the Sea Horizon Image// SENSORS -Vol. 19,iss. 21 (2019), s.1-22
Digital Object Identifier (open in new tab) 10.3390/s19214644
Bibliography: test
  1. Naus, K.; Makar, A. Movement disruptions compensation of sounding vessel with three nonlinear points method. Rep. Geod. 2005, 1, 25-32. open in new tab
  2. NOAA. Department of Defense World Geodetic System 1984, Its Definition and Relationships with Local Geodetic Systems; National Imagery and Mapping Agency: Springfield, VA, USA, 2005; pp. 1-175. open in new tab
  3. Zhou, Z.; Li, Y.; Zhang, J.; Rizos, C. Integrated Navigation System for a Low-Cost Quadrotor Aerial Vehicle in the Presence of Rotor Influences. J. Surv. Eng. 2016, 143, 05016006. [CrossRef] open in new tab
  4. Ricci, L.; Taffoni, F.; Formica, D. On the Orientation Error of IMU: Investigating Static and Dynamic Accuracy Targeting Human Motion. PLoS ONE 2016, 11, e0161940. [CrossRef] [PubMed] open in new tab
  5. Du, S.; Sun, W.; Gao, Y. MEMS IMU Error Mitigation Using Rotation Modulation Technique. Sensors 2016, 16, 2017. [CrossRef] [PubMed] open in new tab
  6. Li, Y.; Wu, W.; Jiang, O.; Wang, J. A New Continuous Rotation IMU Alignment Algorithm Based on Stochastic Modeling for Cost Effective North-Finding Applications. Sensors 2016, 16, 2113. [CrossRef] [PubMed] open in new tab
  7. Naus, K.; Makar, A. Usage of Camera System for Determination of Pitching and Rolling of Sounding Vessel. Rep. Geod. 2005, 2, 301-307. open in new tab
  8. Positioning and Mapping Solutions for UAVs. Available online: PrecisionMappingSolutions-UAVs_BRO.pdf (accessed on 3 May 2019). open in new tab
  9. RIEGL. Available online: (accessed on 3 May 2019).
  10. MATRICE 600. Available online: (accessed on 5 May 2019). open in new tab
  11. Ellipse 2 Series. Available online: pdf (accessed on 5 May 2019). open in new tab
  12. Specht, M.; Specht, C.; Wąż, M.; Naus, K.; Grządziel, A.; Iwen, D. Methodology for Performing Territorial Sea Baseline Measurements in Selected Waterbodies of Poland. Appl. Sci. 2019, 9, 3053. [CrossRef] open in new tab
  13. Stateczny, A.; Motyl, W.; Gronska, D. HydroDron-New step for professional hydrography for restricted waters. In Proceedings of the Baltic Geodetic Congress (Geomatics) 2018, Olsztyn, Poland, 21-23 June 2018. [CrossRef] open in new tab
  14. Szymak, P. Selection of Training Options for Deep Learning Neural Network Using Genetic Algorithm. Proc. MMAR 2019, in press. open in new tab
  15. Naus, K.; Wąż, M. Accuracy of measuring small heeling angles of a ship using an inclinometer. Sci. J. Marit. Univ. Szczec. 2015, 44, 25-28. [CrossRef] open in new tab
  16. Bodnar, T. Wybrane metody przetwarzania obrazów do określania orientacji przestrzennej okrętu. Logistyka 2014, 6, 2100-2107.
  17. Gershikov, E.; Tzvika Libe, T.; Kosolapov, S. Horizon Line Detection in Marine Images: Which Method to Choose? Int. J. Adv. Intell. Syst. 2013, 6, 79-88. open in new tab
  18. Praczyk, T. A quick algorithm for horizon line detection in marine images. J. Mar. Sci. Technol. 2018, 23, 164-177. [CrossRef] open in new tab
  19. DJI. Available online: (accessed on 10 May 2019). open in new tab
  20. Urbański, J.; Kopacz, Z.; Posiła, J. Maritime Navigation-Part I; Polish Naval Acad.: Gdynia, Poland, 2018; pp. 23-56.
  21. Distance to the Horizon. Available online: (accessed on 10 May 2019). open in new tab
  22. Brocks, K. Die Lichtstrahlkrümmung in Bodennähe. Tabellen des Refraktionskoeffizienten, I. Teil (Bereich des Präzisionsnivellements). Dtsch. Hydrogr. Z. 1950, 3, 241-248. [CrossRef] open in new tab
  23. Stober, M. Untersuchungen zum Refraktionseinfluss bei der trigonometrischen Höhenmessung auf dem grönländischen Inlandeis. In Festschrift für Heinz Draheim, Eugen Kuntz und Hermann Mälzer; Geodätisches Institut der Universität Karlsruhe: Karlsruhe, Germany, 1995; pp. 259-272.
  24. Kosiński, W. Geodezja. PWN 2010, 6, 212-214.
  25. Wikipedia. Available online: (accessed on 20 May 2019). open in new tab
  26. Liao, L.-Y.; Bráulio de Albuquerque, F.C.; Parks, R.E.; Sasian, J.M. Precision focal-length measurement using imaging conjugates. Opt. Eng. 2012, 51, 1-6. [CrossRef] open in new tab
  27. DeBoo, B.; Sasian, J. Precise focal-length measurement technique with a reflective Fresnel-zone hologram. Appl. Opt 2003, 42, 3903-3909. [CrossRef] [PubMed] open in new tab
  28. Angelis, M. A new approach to high accuracy measurement of the focal lengths of lenses using a digital Fourier transform. Opt. Commun 1997, 136, 370-374. [CrossRef] open in new tab
  29. Sriram, K.V.; Kothiyal, M.P.; Sirohi, R.S. Curvature and focal length measurements using compensation of a collimated beam. Opt. Laser Technol. 1991, 23, 241-245. [CrossRef] open in new tab
  30. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( open in new tab
Verified by:
Gdańsk University of Technology

seen 24 times

Recommended for you

Meta Tags