Cost Analysis of Prefabricated Elements of the Ordinary and Lightweight Concrete Walls in Residential Construction - Publication - Bridge of Knowledge

Search

Cost Analysis of Prefabricated Elements of the Ordinary and Lightweight Concrete Walls in Residential Construction

Abstract

Global economic growth causes an increase in natural resources exploitation, particularly in construction branch. The growing use of electricity contributes to climate change. Therefore, it is necessary to search the solutions, which will allow for reducing natural resources exploitation. One of the many opportunities to do that is the application of the recycled materials. The authors of the given article have analyzed three variants of construction solutions. One of them was the production of the walls of a building from reinforced concrete prefabricates with styrofoam insulation layer. The second variant for analysis were prefabricated walls from lightweight concrete, made of sintered clay aggregate with a foam core. The third proposed variant was a system of multi-layered walls, which was made of lightweight concrete with granulated expanded glass aggregate (GEGA). The main objective of the research was to assess the use of lightweight GEGA prefabricates, focusing on economic and technological aspects of the solution. The authors have analyzed the entire construction costs; ceilings and stairs were assumed as reinforced concrete elements. In calculations, the weight of the elements was taken into account, as well as transportation and mounting costs. On the basis of this cost analysis, it was concluded that the use of prefabricated element, made of lightweight concrete with GEGA, could be a replacement for the solutions, widely applied until these days. The analysis has also shown that the use of prefabricates with GEGA is sensible from the economic viewpoint, as it allows for saving construction time. Moreover, the solutions, proposed here, allow for saving natural resources and assuming a more environmentally friendly and caring attitude.

Citations

  • 1 9

    CrossRef

  • 0

    Web of Science

  • 2 0

    Scopus

Cite as

Full text

download paper
downloaded 202 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Materials no. 12, pages 1 - 19,
ISSN: 1996-1944
Language:
English
Publication year:
2019
Bibliographic description:
Kurpińska M., Grzyl B., Kristowski A.: Cost Analysis of Prefabricated Elements of the Ordinary and Lightweight Concrete Walls in Residential Construction// Materials -Vol. 12,iss. 3629 (2019), s.1-19
DOI:
Digital Object Identifier (open in new tab) 10.3390/ma12213629
Bibliography: test
  1. PN-EN 206:2013+A1:2016 Concrete. Specification, Performance, Production and Conformity. Available online: https://shop.bsigroup.com/ProductDetail/?pid=000000000030326195 (accessed on 31 December 2013). open in new tab
  2. Oktay, H.; Yumrutas, R.; Akpolat, A. Mechanical and thermal properties of lightweight aggregate concretes. Constr. Build. Mater. 2015, 96, 217-225. open in new tab
  3. Chandra, S.; Berntsson, L. Lightweight Aggregate Concrete. Science, Technology and Applications; Noyes Publications, Norwich, UK; New York, NY, USA, 2002; ISBN 0-8155-1486-7. open in new tab
  4. Šeputytė-Jucikė, J.; Sinica, M. The effect of expanded glass and polystyrene waste on the properties of lightweight aggregate concrete. Eng. Struct. Technol. 2016, 8, 31-40. open in new tab
  5. Ünal, O.; Uygunoglu, T.; Yildiz, A. Investigation of properties of low-strength lightweight concrete for thermal insulation. Build. Environ. 2007, 42, 584-590. open in new tab
  6. Krishnamoorthy, R.R.; Zujip, J.A. Thermal conductivity and microstructure of concrete using recycle glass as a fine aggregate replacement. Int. J. Adv. Res. Technol. 2013, 3, 463-471.
  7. Kurpińska, M. Properties of concrete impregnated using epoxy composition. Roads Bridges-Drog. Mosty 2011, 10, 59-80. open in new tab
  8. Bumanis, G.; Bajare, D.; Korjakins, A. Mechanical and thermal properties of lightweight concrete made from expanded glass. J. Sustain. Arch. Civ. Eng. 2013, 2, 26-32. open in new tab
  9. Omidimoaf, E.; Rajabi, A.M.; Abdelgader, H.S.; Kurpińska, M.; Wilde, K. Effect of coarse grain aggregate on strength parameters of two-stage concrete. Mater. Bud. 2019, 3, 1-3. doi:10.15199/33.2019.03.0. open in new tab
  10. Rumsys, D.; Spudulis, E.; Bacinskas, D.; Kaklauskas, G. Compressive Strenght and Durability Properties Structural Lightweight Concrete with Fine Expanded Class and/or Clay Aggregates. Materials 2018, 11, 2434. doi:10.3390/mal11122434. open in new tab
  11. Ke, Y.; Beaucor, A.L.; Ortola, S.; Dumontet, H.; Cabrillac, R. Influence of volume fraction and characteristics of lightweight aggregates on the mechanical properties of concrete. Constr. Build. Mater. 2009, 23, 2821- 2828. open in new tab
  12. Kurpińska, M.; Ferenc, T. Effect of porosity on physical properties of lightweight cement composite with foamed glass aggregate. In Proceedings of the II International Conference of Computational Methods in Engineering Science (CMES'2017), Lublin, Poland, 23-25 November 2017. open in new tab
  13. Lo, T.Y.; Tang, W.C.; Cui, H.Z. The effects of aggregate properties on lightweight concrete. Build. Environ. 2007, 42, 3025-3029. open in new tab
  14. Wang, J.Y.; Chia, K.S.; Liew, J.Y.R.; Zhang, M.H. Flexural performance of fiber-reinforced ultra-lightweight cement composites with low fiber content. Cem. Concr. Compos. 2013, 43, 39-47. open in new tab
  15. Kristowski, A.; Grzyl, B.; Kurpińska, M.; Pszczoła, M. The rigid and flexible road pavements in terms of life cycle costs. In Proceedings of the Creative Construction Conference 2018, Ljubljana, Slovenia, 30 June- 3 July 2018. doi:10.3311/CCC2018-030. open in new tab
  16. Limbachiya, M.; Meddah, M.; Fotiadou, S. Performance of granulated foam glass concrete. Constr. Build. Mater. 2012, 28, 759-768. open in new tab
  17. Khatib, J.M.; Shariff, S.; Negim, E.M. Effect of incorporating foamed glass on the flexural behaviour of reinforced concrete beams. World Appl. Sci. J. 2012, 19, 47-51. open in new tab
  18. Chung, S.Y.; Abd Elrahman, M.; Sikora, P.; Rucinska, T.; Horszczaruk, E.; Stephan, D. Evaluation of the Effects of Crushed and Expanded Waste Glass Aggregates on the Material Properties of Lightweight Concrete Using Image-Based Approaches. Materials 2017, 10, 1354. doi:10.3390/ma10121354. open in new tab
  19. Kurpińska, M.; Ferenc, T. Application of lightweight cement composite with foamed glass aggregate in shell structures. Shell Struct. Theory Appl. 2018, 4, 549-552. open in new tab
  20. Kurpinska, M.; Kułak, L. Predicting Performance of Lightweight Concrete with Granulated Expanded Glass and Ash Aggregate by Means of Using Artificial Neural Networks. Materials 2019, 12, 2002. doi:10.3390/ma12122002. open in new tab
  21. Kralj, D. Experimental study of recycling lightweight concrete with aggregates containing expanded glass. Process. Saf. Environ. Prot. 2006, 87, 267-273. open in new tab
  22. Brückner, T.; Fuchs, A.; Wistlich, L.; Hoess, A.; Nies, B.; Gbureck, U. Prefabricated and Self-Setting Cement Laminates. Materials 2019, 12, 834. doi:10.3390/ma12050834. open in new tab
  23. Liu, S.; Wang, S.; Tang, W.; Hu, N.; Wei, J. Inhibitory E_ect of waste Glass Powder on ASR Expansion Induced by Waste Glass Aggregate Materials. Materials 2015, 8, 6849-6862. open in new tab
  24. Jamshidi, A.; Kurumisawa, K.; Nawa, T.; Igarashi, T. Performance of pavements incorporating waste glass: The current state of the art. Renew. Sustain. Energy Rev. 2016, 64, 211-236. open in new tab
  25. Mariak, A.; Kurpińska, M.; Wilde, K. Maturity curve for estimating the in-place strength of high performance concrete. MATEC Web Conf. 2019, 262, 06007. open in new tab
  26. Mariak, A.; Kurpińska, M. The effect of macro polymer fibres length and content on the fibre reinforced concrete. MATEC Web Conf. 2018, 219, 03004. open in new tab
  27. Gong, T.; Yang, J.; Hu, H.; Xu, F. Construction Technology of Off-Site Precast Concrete Buildings. Front. Eng. Manag. 2015, 2, 122. doi:10.15302/J-FEM-2015039. open in new tab
  28. Pons, O.; Oliva, J.M.; Maas, S.R. Improving the Learning Process in the Latest Prefabricated School Buildings. Improv. Sch. 2010, 13, 249-265. doi:10.1177/1365480210390089. open in new tab
  29. Cao, X.; Li, X.; Zhu, Y.; Zhang, Z. A comparative study of environmental performance between prefabricated and traditional residential buildings in China. J. Clean. Prod. 2015, 109, 131-143. doi:10.1016/j.jclepro.2015.04.120. open in new tab
  30. Jiao, L.; Li, X.D. Application of Prefabricated Concrete in Residential Buildings and its Safety Management. Arch. Civ. Eng. 2018, 64, 21-35. doi:10.2478/ace-2018-0014. open in new tab
  31. PN-EN 12524:2000. Building Materials and Products. Hygrothermal Properties. Tabulated Design Values; ISO: Geneva, Switzerland, 2000. open in new tab
  32. PN-EN ISO 6946:2017. Building Components and Building Elements. Thermal Resistance and Thermal Transmittance. Calculation Methods; ISO: Geneva, Switzerland, 2017. open in new tab
  33. PN-EN 12831-1:2017. Energy Performance of Buildings. Method for Calculation of the Design Heat Load. Space Heating Load, Module M3-3; ISO: Geneva, Switzerland, 2017. open in new tab
  34. Mostafa, K.G.; Montemagno, C.; Qureshi, A.J. Strength to cost ratio analysis of FDM Nylon 12 3D Printed Parts. Procedia Manuf. 2018, 26, 753-762. doi.org/10.1016/j.promfg.2018.07.086. open in new tab
  35. Khosravani, M.R.; Nasiri, S.; Weinberg, K. Application of case-based reasoning in a fault detection system on production of drippers. Appl. Soft Comput. 2019, 75, 227-232, doi.org/10.1016/j.asoc.2018.11.017. open in new tab
  36. Leśniak, A.; Zima, K. Cost calculation of construction projects including sustainability factors using the Case Based Reasoning (CBR) method. Sustainability 2018, 10, 1608. doi:10.3390/su10051608. open in new tab
  37. Resolution of the Minister of Infrastructure of May 18, 2004 on determining the methods and grounds for preparing an investor's cost estimate, calculating planned costs of design works and planned costs of construction works specified in the functional and utility program. Available online: http://prawo.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20041301389 (accessed on 3 November 2019). open in new tab
  38. Grzyl, B.; Kristowski, A. A calculation proposal of labour time input when concreting in difficult atmospheric conditions. Czas. Tech. 2014, 2014, 203-208.
  39. Ośrodek Wdrożeń Ekonomiczno-Organizacyjnych Budownictwa PROMOCJA Sp. z o.o. Bulletin of prices for investment construction works, III term 2019. OWEOB Promotion Sp.z o.o.: Warszawa, Poland, 2019. 40. Wacetob. Katalog nakładów rzeczowych nr 2-02. Wacetob: Warszawa, Poland, 2017.
  40. Leśniak, A.; Plebankiewicz, E.; Zima, K. Cost calculation of building structures and building works in Polish conditions. Eng. Manag. Res. 2012, 1, 72-81. open in new tab
  41. Grzyl, B.; Siemaszko, A. The Life Cycle Assessment and Life Cycle Cost in public works contracts. E3S Web Conf. 2018, 44, 00047. doi:10.1051/e3sconf/20184400047. open in new tab
  42. Grzyl, B.; Kristowski, A.; Jamroz, K.; Gobis, A. Methods of estimating the cost of traffic safety equipment's life cycle. MATEC Web Conf. 2017, 122, 02003. doi:10.1051/matecconf/201712202003. open in new tab
  43. Grzyl, B.; Miszewska-Urbańska, E.; Apollo, M. The life cycle cost of a building from the point of view of environmental criteria of selecting the most beneficial offer in the area of competitive tendering. E3S Web Conf. 2017, 17, 00028. doi:10.1051/e3sconf/20171700028. open in new tab
  44. Kowalski, D.; Grzyl, B.; Kristowski, A. The cost analysis of corrosion protection solutions for steel components in terms of the object life cycle cost. Civ. Environ. Eng. Rep. 2017, 26, 5-13. doi:10.1515/ceer- 2017-0031. open in new tab
  45. Plebankiewicz, E.; Zima, K.; Wieczorek, D. Life cycle cost modelling of buildings with consideration of the risk. Arch. Civ. Eng. 2016, 62, 149-166. doi:10.1515/ace-2015-0071. open in new tab
Verified by:
Gdańsk University of Technology

seen 148 times

Recommended for you

Meta Tags