Electrochemical detection of 4,4',5,5'-tetranitro-1H,1'H-2,2'-biimidazole on boron-doped diamond/graphene nanowall electrodes
Abstract
We present a promising approach to the electroanalytical detection of a specific nitroaromatic explosive in landfill leachates (LLs) that originated from a municipal solid waste plant. The paper is focused but not limited to the sensing of 4,4',5,5'-tetranitro-1H,1'H-2,2'-biimidazole (TNBI) using differential pulse voltammetry and cyclic voltammetry. Highly electroactive nanocarbon was applied to determine low concentrations of the analyte in the complex interfering matrix as leachate samples. The mechanism of nitro- group reduction is attributed to the sensing effect, as revealed in the voltammograms of TNBI. The developed sensor model has two linear regions extending from 0.02 ppm to 1.4 ppm and from 2 ppm to 16 ppm resulting from adsorption and diffusion-controlled processes, respectively. The limit of detection was as low as 0.52 ppm (1.66 μM L-1) thanks to the electrochemical performance of the joint effect of the diamond/graphene composite nanowall surface.
Citations
-
8
CrossRef
-
0
Web of Science
-
6
Scopus
Authors (10)
Cite as
Full text
- Publication version
- Accepted or Published Version
- License
- Copyright (2020 IEEE)
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
IEEE SENSORS JOURNAL
no. 20,
pages 9637 - 9643,
ISSN: 1530-437X - Language:
- English
- Publication year:
- 2020
- Bibliographic description:
- Dettlaff A., Jakóbczyk P., Sobaszek M., Ficek M., Dec B., Łuczkiewicz A., Szala M., Wojas J., Ossowski T., Bogdanowicz R.: Electrochemical detection of 4,4',5,5'-tetranitro-1H,1'H-2,2'-biimidazole on boron-doped diamond/graphene nanowall electrodes// IEEE SENSORS JOURNAL -Vol. 20,iss. 17 (2020), s.9637-9643
- DOI:
- Digital Object Identifier (open in new tab) 10.1109/jsen.2020.2973451
- Verified by:
- Gdańsk University of Technology
seen 167 times
Recommended for you
Comparison of the paracetamol electrochemical determination using boron-doped diamond electrode and boron-doped carbon nanowalls
- P. Niedziałkowski,
- Z. Celuba,
- N. Malinowska
- + 6 authors
Melamine-modified boron-doped diamond towards enhanced detection of adenine, guanine and caffeine
- P. Niedziałkowski,
- R. Bogdanowicz,
- P. Zięba
- + 4 authors