Enhanced Charge Storage Mechanism And Long-Term Cycling Stability In Diamondized Titania Nanocomposite Supercapacitors Operating In Aqueous Electrolytes - Publication - Bridge of Knowledge

Search

Enhanced Charge Storage Mechanism And Long-Term Cycling Stability In Diamondized Titania Nanocomposite Supercapacitors Operating In Aqueous Electrolytes

Abstract

The long cycle life stability jointly with high energy density are limiting broader feasible applications of supercapacitors. The novel diamondized titania nanocomposite supercapacitors deliver high power and energy densities along with high capacitance retention rates. Supercapacitor electrodes were fabricated utilizing a combination of Ti anodization followed by chemical vapor deposition resulting in simultaneous growth of complex BDD/TiC interface. The first-principles simulations along with extended molecular investigations conducted by BF-TEM and HR-SEM revealed that capacitive phenomena are delivered by nanoporous, multi-faceted, and substoichiometric TiC, forming clusters at the lateral surfaces of titania nanotubes. Next, TiC mechanical stability and effective charge transfer electrode-electrolyte are efficiently provided by highly conductive although discontinuous BDD overlayer. The assembled two-electrode supercapacitor devices exhibited capacitance 15 mF cm−2, which were stable at 0.1 V s−1 scan rate in various neutral aqueous electrolytes. The composite TiO2NT-BDD supercapacitors showed outstanding long-term cycling stability with capacitance retention of 93% after 100,000 chronopotentiometry cycles verified by post-aging cyclic voltammetry tests. In parallel, the energy and power density calculated at a current density of 3 A g-1 achieved levels as high as 14.74 Wh kg-1 and 24.68 kW kg-1, revealing the superior performance of the assembled devices compared to recently reported supercapacitors.

Citations

  • 1 2

    CrossRef

  • 0

    Web of Science

  • 1 2

    Scopus

Cite as

Full text

download paper
downloaded 113 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Journal of Physical Chemistry C no. 124, pages 15698 - 15712,
ISSN: 1932-7447
Language:
English
Publication year:
2020
Bibliographic description:
Bogdanowicz R., Dettlaff A., Skiba F., Trzciński K., Szkoda M., Sobaszek M., Ficek M., Dec B., Macewicz Ł., Geng D., Ignaczak A., Ryl J.: Enhanced Charge Storage Mechanism And Long-Term Cycling Stability In Diamondized Titania Nanocomposite Supercapacitors Operating In Aqueous Electrolytes// Journal of Physical Chemistry C -Vol. 124,iss. 29 (2020), s.15698-15712
DOI:
Digital Object Identifier (open in new tab) 10.1021/acs.jpcc.0c02792
Verified by:
Gdańsk University of Technology

seen 191 times

Recommended for you

Meta Tags