Low-Level Aerial Photogrammetry as a Source of Supplementary Data for ALS Measurements - Publication - Bridge of Knowledge

Search

Low-Level Aerial Photogrammetry as a Source of Supplementary Data for ALS Measurements

Abstract

The development of laser scanning technology ALS allows to make high-resolution measurements for large areas result-ing in significant reduction of costs. The main stakeholders at heights data received from the airborne laser scanning is mainly state administration. The state institutions appear among projects such as ISOK. Each point is classified in ac-cordance with the standard LAS 1.2, our research focuses on the class 6 - buildings. In the project ISOK, the buildings are not measured in whole (from every side).A typical way to measure the missing elements is to increase the coverage of the cross and additional raids which unfortunately increases the cost measurements. An alternative solution density point clouds ALS is the use of optical scanning and UAV. The article shows the process of density the point clouds coming from ALS using point cloud obtained through optical scanning.The methods that illustrate the process of compaction data format LAS using the following methods: point cloud having field coordinates in the system compatible with the system of clouds acquired with ALS, point cloud in the local system, point cloud in the local system without the scale.The file size, depending on the density of the point cloud was analyzed.

Citations

  • 1

    CrossRef

  • 0

    Web of Science

  • 2

    Scopus

Cite as

Full text

download paper
downloaded 83 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC open in new tab

Keywords

Details

Category:
Conference activity
Type:
materiały konferencyjne indeksowane w Web of Science
Title of issue:
“Environmental Engineering” 10th International Conference strony 1 - 6
Language:
English
Publication year:
2017
Bibliographic description:
Bobkowska K., Inglot A., Przyborski M., Sieniakowski J., Tysiąc P..: Low-Level Aerial Photogrammetry as a Source of Supplementary Data for ALS Measurements, W: “Environmental Engineering” 10th International Conference, 2017, ,.
DOI:
Digital Object Identifier (open in new tab) 10.3846/enviro.2017.168
Bibliography: test
  1. Ahokas E., Kaartinen H., Hyyppä J. 2008. On the quality checking of the airborne laser scanningbased nationwide elevation model in Finland, The International Archives of the Photogramme-try, Remote Sensing and Spatial Information Sciences 37: 267- 270. open in new tab
  2. Bobkowska K., Inglot A., Mikusova M., Tysiąc P. 2017. Implementation of spatial information for monitoring and analysis of the area around the port using laser scanning techniques, POLISH MARITIME RESEARCH 24(93). open in new tab
  3. Bobkowska K., Janowski A., Przyborski M., Szulwic J. 2016. A new method of persons identification based on comparative analysis of 3d face models SGEM2016 Conference Proceedings, Book2 Vol. 2. DOI: 10.5593/SGEM2016/B22/S10.098 . open in new tab
  4. Bobkowska K., Janowski A., Przyborski M., Szulwic J. 2016. Analysis of high resolution clouds of points as a source of biometric data Geodetic Congress (Geomatics), Baltic. , Gdansk. DOI: 10.1109/BGC.Geomatics.2016.12 . open in new tab
  5. Colomina I., Molina P. 2014. Unmanned aerial systems for photogrammetry and remote sensing: A review, ISPRS Journal of Photogrammetry and Remote Sensing 92: 79-97. DOI: 10.1016/j.isprsjprs.2014.02.013 . open in new tab
  6. Hejmanowska B., Kamiński W., Przyborski M., Pyka K., Pyrchla J. 2015. Modern remote sensing and the challenges facing education systems in terms of its teaching EDULEARN15 Proceedings , ISBN 978-84-606-8243-1, ISSN 2340-1117, 7th International Conference on Education and New Learning Technologies, 6-8 July 2015, Barcelona, Spain.Prieiga per internetą: http://www.gdansk.geo.edu.pl/publikacje/EDULEARN_PROCEEDINGS_2015_remote-sensing.pdf.
  7. Hejmanowska B., Warcho A. 2010. Comparison of the Elevation Obtained from ALS, ADS40 Stereoscopic Measurements and GPS, Acta Scientiarum Polonorum. Geodesia et Descriptio Terrarum 9(3): 13-24. open in new tab
  8. Holopainen M., et al. 2011. The use of ALS , TLS and VLS measurements in mapping and monitoring urban trees Urban Remote Sensing Event (JURSE), 2011 Joint. Urban Remote Sensing Event (JURSE), 2011 Joint. open in new tab
  9. Janowski A., Szulwic J., Tysiąc P., Wojtowicz A. 2013. Airborne And Mobile Laser Scanning In Measurements Of Sea Cliffs On The Southern Baltic, Photogrammetry and Remote Sensing 2: 17-24. DOI: 10.5593/SGEM2015/B12/S2.003 . open in new tab
  10. Maślanka M. 2016. Factors influencing ground point density from Airborne Laser Scanning -a case study with ISOK Project data, Annals of Geomatics 14(4(47)): 511-519.
  11. Mikrut S., Moskal A., Marmol U. 2014. Integration of Image and Laser Scanning Data Based on Selected Example, Image Processing & Communications 19(2-3): 37-44. DOI: 10.1515/ipc-2015-0008 . open in new tab
  12. NAESSET E., et al. 2004. Laser Scanning of Forest Resources: The Nordic Experience, Scandinavian Journal of Forest Research 19(6): 482-499.
  13. Nex F., Remondino F. 2013. UAV for 3D mapping applications: a review, Applied Geomatics 6(1): 1-15. DOI: 10.1007/s12518- 013-0120-x . open in new tab
  14. Pingbo T., Huber D., Akinci B., Lipman R., Lytle A. 2010. Automatic reconstruction of as-built building information models from laser-scanned point clouds: A review of related techniques, Automation in Construction 19(7): 829-843.
  15. Reutebuch S.E., McGaughey R.J., Andersen H.-E., Carson W.W. 2005. Accuracy of a high-resolution lidar terrain model under a conifer forest canopy, Canadian journal of Remote Sensing 31(4): 283-288. DOI: 10.5589/m05-016 . open in new tab
  16. Rottensteiner F., Briese C. 2002. A new method for building extraction in urban areas from high-resolution LIDAR data, International Archives of Photogrammetry and Remote Sensing XXXIV(3): 295-301. DOI: 10.3390/s120506347 . open in new tab
  17. Tse R.O.C., Gold C., Kidner D. 2008. 3D City Modelling from LIDAR Data P. Van Oosterom et al., sud. Advances in 3D Geoinformation Systems. Springer Berlin Heidelberg. DOI: 10.1007/978-3-540-72135-2_10 . open in new tab
Verified by:
Gdańsk University of Technology

seen 185 times

Recommended for you

Meta Tags