Modyfikacje polimeraz DNA jako rozwiązania problemów w reakcjach PCR - Publication - Bridge of Knowledge

Search

Modyfikacje polimeraz DNA jako rozwiązania problemów w reakcjach PCR

Abstract

Reakcja PCR już od wielu lat jest podstawowym narzędziem stosowanym w biotechnologii molekularnej. Nadal napotykamy jednak liczne problemy podczas jej przeprowadzania związane z trudnymi matrycami, obecnością inhibitorów itp. Optymalizacja reakcji PCR jest więc niezbędna w celu poprawy wyników. Jednym z rozwiązań tych problemów może być modyfikowanie polimeraz DNA. W powyższym artykule opisano problemy i rozwiązania zależne polimerazy DNA. Opisano również powody, które uzasadniają potrzebę modyfikacji polimeraz DNA, rodzaje modyfikacji, a także podjęto próbę określenia wpływu tych zmian na końcową efektywność polimeraz.

Cite as

Full text

download paper
downloaded 4016 times
Publication version
Accepted or Published Version
License
Copyright (Wydawnictwo Naukowe TYGIEL sp. z o.o.)

Keywords

Details

Category:
Monographic publication
Type:
rozdział, artykuł w książce - dziele zbiorowym /podręczniku o zasięgu krajowym
Title of issue:
W : Enzymologia w obliczu wyzwań i możliwości XXI wieku strony 26 - 42
Language:
Polish
Publication year:
2017
Bibliographic description:
Śpibida M., Olszewski M., Krawczyk B.: Modyfikacje polimeraz DNA jako rozwiązania problemów w reakcjach PCR// Enzymologia w obliczu wyzwań i możliwości XXI wieku/ ed. Beata A. Nowak, Monika Maciąg Lublin: Wydawnictwo Naukowe TYGIEL, 2017, s.26-42
Bibliography: test
  1. Passarge E., Color Atlas of Genetics, Thieme, (2007)
  2. Hubscher U. DNA Polymerases -Discovery, Characterization and Functions in Cellular DNA Transactions, World Scientific Publishing, (2010). open in new tab
  3. Al-soud W. A., Rådström P., Purification and Characterization of PCR-Inhibitory Components in Blood, 39 (2001), s. 485-93 open in new tab
  4. Watson R. J., Blackwell B., Purification and characterization of a common soil component which inhibits the polymerase chain reaction, Canadian Journal of Microbiology, 46 (2000), s.633-42 open in new tab
  5. Mamedov T. G. Pienaar E., Whitney S. E., TerMaat J. R., Carvill G., Goliath R., Subramanian A., Viljoen H. J., A fundamental study of the PCR amplification of GC-rich DNA templates, Computational Biology and Chemistry, 32 (2008), s.452-7 open in new tab
  6. Primrose S. B., Twyman R. M., Principles of Gene Manipulation and Genomics, Blackwell, (2006)
  7. Vainshtein I., Atrazhev A., Eom S. H., Elliott J. F., Wishart D. S., Malcolm B. A., Peptide Rescue of an N-Terminal Truncation of the Stoffel Fragment of Taq DNA Polymerase, Protein Science, 5 (1996), 51785-92 open in new tab
  8. Musso M., Bocciardi R., Parodi S., Ravazzolo R., Ceccherini I., Betaine, dimethyl sulfoxide, and 7-deaza-dGTP, a powerful mixture for amplification of GC-rich DNA sequences, The Journal of Molecular Diagnostics, 8 (2006), s.544-50 open in new tab
  9. Zhang Z., Kermekchiev M. B., Barnes W. M., Direct DNA amplification from crude clinical samples using a PCR enhancer cocktail and novel mutants of Taq. The Journal of Molecular Diagnostics, 12 (2010), s.152-61 open in new tab
  10. Nagai M., Yoshida A., Sato N., Additive effects of bovine serum albumin, dithiothreitol and glycerolon PCR, International Union of Biochemistry and Molecular Biology for Life Scientist, 44 (1998), s.157-163 open in new tab
  11. Forbes B. A., Hicks K. E., Substances Interfering with Direct Detection of Mycobacterium tuberculosis in Clinical Specimens by PCR: Effects of Bovine Serum Albumin, Journal of Clinical Microbiology, 34 (1996), s.2125-2128 open in new tab
  12. Kovárová M., Dráber P., New specificity and yield enhancer of polymerase chain reactions, Nucleic Acids Research, 28(2000), s. E70
  13. Weyant R. S., Edmonds P., Swaminathan B., Effect of ionic and nonionic detergents on the Taq polymerase, BioTechniques, 9(1990), s.308-9
  14. Zhang Z., Yang X., Meng L., Liu F., Shen C., Yang W., Enhanced amplification of GC-rich DNA with two organic reagents, BioTechniques, 47(2009), s.775-779 open in new tab
  15. Dabrowski S., Kur J., Cloning overexpression, and purification of the recombinant His- tagged SSB protein of Escherichia coli and use in polymerase chain reaction amplification, Protein Expression and Purification, 16(1999), s. 96-102 open in new tab
  16. Dabrowski S., Olszewski M., Piatek R., Brillowska-Dabrowska A., Konopa G., Kur J., Identification and characterization of single-stranded-DNA-binding proteins from Thermus thermophilus and Thermus aquaticus -new arrangement of binding domains, Microbiology, 148 (2002), s. 3307-3315 open in new tab
  17. Olszewski M., Mickiewicz M., Kur J., Two highly thermostable paralogous single- stranded DNA-binding proteins from Thermoanaerobacter tengcongensis, Archives ofMicrobiolgy, 190 (2008), s. 79-87 open in new tab
  18. Olszewski M., Rebała K., Szczerkowska Z., Kur J., Application of SSB-like protein from Thermus aquaticus in multiplex PCR of human Y-STR markers identification, Molecular and Cellular Probes, 19 (2005), s. 203-5 open in new tab
  19. Nowak M., Olszewski M., Śpibida M., Kur J., Characterization of single-stranded DNA-binding proteins from the psychrophilic bacteria Desulfotalea psychrophila, Flavobacterium psychrophilum, Psychrobacter arcticus, Psychrobacter cryohalolentis, Psychromonas ingrahamii, Psychroflexus torquis, and Photobacterium profundum, BMC Microbiology, 14 (2014), s. 91 open in new tab
  20. Stemmer W. P., DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution, Proceedings of the National Academy of Sciences of the United States of America, 91 (1994), s.10747-51 open in new tab
  21. Hanson-Manful P., Patrick W. M., Construction and analysis of randomized protein- encoding libraries using error-prone PCR, Methods in Molecular Biology, 996 (2013), s. 251-67 open in new tab
  22. Reikofski J., Tao B. Y., Polymerase chain reaction (PCR) techniques for site-directed mutagenesis, Biotechnology Advances, 10 (1992), s.535-47 open in new tab
  23. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R., Site-directed mutagenesis by overlap extension using the polymerase chain reaction, Gene, 77 (1989), s. 51-9 open in new tab
  24. Suzuki M., Avicola A. K., Hood L., Loeb L. A., Low fidelity mutants in the O-helix of Thermus aquaticus DNA polymerase I, The Journal of Biological Chemistry, 27 2(1997), s. 11228-35 open in new tab
  25. Suzuki M. Yoshida S., Adman E. T., Blank A., Loeb L. A., Thermus aquaticus DNA polymerase I mutants with altered fidelity. Interacting mutations in the O-helix, The Journal of Biological Chemistry, 275 (2000), s. 32728-35 open in new tab
  26. Yamagami T., Ishino S., Kawarabayasi S., Ishino Y., Mutant Taq DNA polymerases with improved elongation ability as a useful reagent for genetic engineering, Frontiers in Microbiology, 5 (2014), s. 461 open in new tab
  27. Kermekchiev M. B., Kirilova L. I., Vail E. E., Barnes W. M., Mutants of Taq DNA polymerase resistant to PCR inhibitors allow DNA amplification from whole blood and crude soil samples, Nucleic Acids Research, 37 (2009), s. e40 open in new tab
  28. Ignatov K., Kramarov V., Billingham S., Chimeric DNA polymerase, US Patent 20090209005 A1, (2009) open in new tab
  29. Faurholm B., McEwan P., Bourn W., Rush G., Chimeric DNA Polymerases, US Patent 20120115188 A1, (2012)
  30. Hamilton S. C., Farchaus J. W., Davis M. C., DNA polymerases as engines for biotechnology, BioTechniques, 31 (2001), s. 370-6, 378-80, 382-3 open in new tab
  31. Gelfand D. H., Reichert F. L., Mutant chimeric DNA polymerase, US Patent 6228628 B1, (2001)
  32. Wang Y., Prosen D. E., Mei L., Sullivan J. C., Finney M., Horn P. B. V., A novel strategy to engineer DNA polymerases for enhanced processivity and improved performance in vitro, Nucleic Acids Research, 32 (2004), s. 1197-207 open in new tab
  33. Gao Y. G., Su S. Y., Robinson H., Padmanabhan S., Lim L., McCrary B. S., Wan A. H., The crystal structure of the hyperthermophile chromosomal protein Sso7d bound to DNA, Nature Structural & Molecular Biology, 5 (1998), s. 782-786 open in new tab
  34. Lee J. I., Cho S. S., Kil E. J., Kwon S. T., Characterization and PCR application of a thermostable DNA polymerase from Thermococcus pacificus, Enzyme and Microbial Technology, 47 (2010), s. 147-152 open in new tab
  35. Wang F., Li S., Zhao H., Bian L., Chen L., Zhang Z., Zhong X., Ma L., Yu X., Expression and Characterization of the RKOD DNA Polymerase in Pichia pastoris, PloS one, 10 (2015), s. e0131757 open in new tab
  36. Sun S., Geng L., Shamoo Y., Structure and Enzymatic Properties of a Chimeric Bacteriophage RB69 DNA Polymerase and Single-Stranded DNA Binding Protein With Increased Processivity, Proteins, 65 (2006), s. 231-238 open in new tab
  37. Lee J. E., Potter R. J., Mandelman D., SSB -polymerase fusion proteins, EP Patent 1934372 B1, (2013)
  38. Haseltine C. A., Kowalczykowski S. C., A distinctive single-strand DNA-binding protein from the Archaeon Sulfolobus solfataricus, Molecular Microbiology, 43 (2002), s. 1505-15 open in new tab
  39. McInerney P., Adams P., Hadi M. Z., Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase, Molecular biology international, 2014 (2014), s. 287430 open in new tab
  40. Takagi M., Nishioka M., Kakihara H., Kitabayashi M., Inoue H., Kawakami B., Oka M., Imanaka T., Characterization of DNA polymerase from Pyrococcus sp. strain KOD1 and its application to PCR, Applied and Environmental Microbiology, 63(1997), s. 4504-10 open in new tab
  41. McDonald J. P., Hall A., Gasparutto D., Cadet J., Ballantyne J., Woodgate R., Novel thermostable Y-family polymerases: applications for the PCR amplification of damaged or ancient DNAs, Nucleic Acids Research, 34 (2006), s. 1102-1111 open in new tab
  42. Lehmann A. R., New Functions for Y Family Polymerases, Molecular Cell, 24 (2006), s.493-495 open in new tab
  43. Nishioka M., Mizuguchi H., Fujiwara S., Komatsubara S., Kitabayashi M., Uemura H., Takagi M., Imanaka T., Long and accurate PCR with a mixture of KOD DNA polymerase and its exonuclease deficient mutant enzyme, Journal of Biotechnology, 88 (2001), s. 141-149 open in new tab
  44. Cline J., Braman J. C., Hogrefe H. H., PCR fidelity of pfu DNA polymerase and other thermostable DNA polymerases, Nucleic Acids Research, 24 (1996), s. 3546-51 open in new tab
  45. Al-soud W. A., Rådström P., Capacity of nine thermostable DNA polymerases to mediate DNA amplification in the presence of PCR-inhibiting samples, Applied and Environmental Microbiology, 64 (1998), s. 3748-3753
Verified by:
Gdańsk University of Technology

seen 338 times

Recommended for you

Meta Tags