Skuteczność klasyfikacji gatunków muzycznych za pomocą sieci neuronowej w zależności od typu danych wejściowych
Abstract
Rozpoznawanie gatunku muzycznego jest jednym z podstawowych elementów inteligentnych systemów tworzenia automatycznych list muzyki. Platformy strumieniowe oferujące taką usługę wymagają rozwiązań, które umożliwią jak najdokładniej określić przynależność utworu do gatunku muzycznego. Zgodnie z aktualnym stanem wiedzy – najskuteczniejszym klasyfikatorem są sztuczne sieci neuronowe (w tym w wersji uczenia głębokiego), dla których wejście może stanowić spektrogram (postać 2D wektora wejściowego), współczynniki MFCC czy wektor parametrów. We wcześniejszych pracach autorzy opisali opracowaną przez siebie sztuczną sieć neuronową, która z 5-procentowym błędem pozwoliła wyznaczyć zestaw deskryptorów standardu MPEG-7. Mogą one zostać wykorzystane między innymi jako dane wejściowe do klasyfikatora gatunku muzycznego. W rozdziale zaprezentowano porównanie skuteczności klasyfikatora wykorzystującego architekturę głęboką w zależności od typu danych wejściowych, takich jak: sygnał w postaci czasowej, spektrogram, MFCC, wektor parametrów oraz deskryptory niskopoziomowe standardu MPEG-7 zarówno występujące w bazie danych, jak i te obliczone z wykorzystaniem sieci neuronowej.
Citations
-
0
CrossRef
-
0
Web of Science
-
0
Scopus
Authors (3)
Cite as
Full text
full text is not available in portal
Keywords
Details
- Category:
- Monographic publication
- Type:
- rozdział, artykuł w książce - dziele zbiorowym /podręczniku o zasięgu krajowym
- Language:
- Polish
- Publication year:
- 2021
- Bibliographic description:
- Blaszke M., Koszewski D., Kostek B.: Skuteczność klasyfikacji gatunków muzycznych za pomocą sieci neuronowej w zależności od typu danych wejściowych// Postępy badań w inżynierii dźwięku i obrazu: nowe trendy i zastosowania technologii dźwięku wielokanałowego oraz badania jakości dźwięku/ : , 2021, s.207-224
- DOI:
- Digital Object Identifier (open in new tab) 10.37190/ido2021
- Verified by:
- Gdańsk University of Technology
seen 262 times