Water Footprint Assessment of Selected Polymers, Polymer Blends, Composites, and Biocomposites for Industrial Application - Publication - MOST Wiedzy


Water Footprint Assessment of Selected Polymers, Polymer Blends, Composites, and Biocomposites for Industrial Application


This paper presents a water footprint assessment of polymers, polymer blends, composites, and biocomposites based on a standardized EUR-pallet case study. The water footprint analysis is based on life cycle assessment (LCA). The study investigates six variants of EUR-pallet production depending on the materials used. The system boundary included the production of each material and the injection molding to obtain a standardized EUR-pallet of complex properties. This paper shows the results of a water footprint of six composition variants of analyzed EUR-pallet, produced from biocomposites and composites based on polypropylene, poly(lactic acid), cotton fibers, jute fibers, kenaf fibers, and glass fibers. Additionally, a water footprint of applied raw materials was evaluated. The highest water footprint was observed for cotton fibers as a reinforcement of the analyzed biocomposites and composites. The water footprint of cotton fibers is caused by the irrigation of cotton crops. The results demonstrate that the standard EUR-pallet produced from polypropylene with glass fibers as reinforcement can contribute to the lowest water footprint.


  • 2


  • 1

    Web of Science

  • 2


Authors (5)


artykuły w czasopismach
Published in:
Polymers no. 11,
ISSN: 2073-4360
Publication year:
Bibliographic description:
Korol J., Hejna A., Burchart-Korol D., Chmielnicki B., Wypiór K.: Water Footprint Assessment of Selected Polymers, Polymer Blends, Composites, and Biocomposites for Industrial Application// Polymers -Vol. 11,iss. 11 (2019), s.1791-
Digital Object Identifier (open in new tab) 10.3390/polym11111791
Bibliography: test
  1. Korol, J.; Lenża, J.; Formela, K. Manufacture and research of TPS/PE biocomposites properties. Compos. Part B Eng. 2015, 68, 310-316. [CrossRef] open in new tab
  2. PLA Recycling Within PET Stream Debated. Available online: https://www.earth911.com/inspire/programs- initiatives/pla-recycling-within-pet-stream-debated (accessed on 17 July 2019). open in new tab
  3. Baulch, S.; Perry, C. Evaluating the impacts of marine debris on cetaceans. Mar. Pollut. Bull. 2014, 80, 210-221. [CrossRef] [PubMed] open in new tab
  4. Fife, D.T.; Robertson, G.J.; Shutler, D.; Braune, B.M.; Mallory, M.L. Trace elements and ingested plastic debris in wintering dovekies (Alle alle). Mar. Pollut. Bull. 2015, 91, 368-371. [CrossRef] [PubMed] open in new tab
  5. Suaria, G.; Aliani, S. Floating debris in the Mediterranean Sea. Mar. Pollut. Bull. 2014, 86, 494-504. [CrossRef] open in new tab
  6. Alvarez-Chavez, C.R.; Edwards, S.; Moure-Eraso, R.; Geiser, K. Sustainability of bio-based plastics: General comparative analysis and recommendations for improvement. J. Clean. Prod. 2012, 23, 47-56. [CrossRef] open in new tab
  7. Tsiropoulos, I.; Faaij, A.P.C.; Lundquist, L.; Schenker, U.; Briois, J.F.; Patel, M.K. Life cycle impact assessment of bio-based plastics from sugarcane ethanol. J. Clean. Prod. 2015, 90, 114-127. [CrossRef] open in new tab
  8. Korol, J.; Burchart-Korol, D.; Pichlak, M. Expansion of environmental impact assessment for eco-efficiency evaluation of biocomposites for industrial application. J. Clean. Prod. 2016, 113, 144-152. [CrossRef] open in new tab
  9. Vilaplana, F.; Stromberg, E.; Karlsson, S. Environmental and resource aspects of sustainable biocomposites. Polym. Degrad. Stabil. 2010, 95, 2147-2161. [CrossRef] open in new tab
  10. Martinez, P.; Garraín, D.; Vidal, R. LCA of Biocomposites Versus Conventional Products. In Proceedings of the 3rd International Conference on Life Cycle Management, University of Zurich, Zurich, Switzerland, 27-29 August 2007.
  11. Vidal, R.; Martinez, P.; Garraín, D. Life cycle assessment of composite materials made of recycled thermoplastics combined with rice husks and cotton linters. Int. J. Life Cycle Ass. 2009, 14, 73-82. [CrossRef] open in new tab
  12. Yates, M.R.; Barlow, C.Y. Life cycle assessments of biodegradable, commercial biopolymers-A critical review. Resour. Conserv. Recycl. 2013, 78, 54-66. [CrossRef] open in new tab
  13. Broeren, M.L.M.; Kuling, L.; Worrell, E.; Shen, L. Environmental impact assessment of six starch plastics focusing on wastewater-derived starch and additives. Resour. Conserv. Recycl. 2017, 127, 246-255. [CrossRef] open in new tab
  14. Mahalle, L.; Alemdar, A.; Mihai, M.; Legros, N. A cradle-to-gate life cycle assessment of wood fibre-reinforced polylactic acid (PLA) and polylactic acid/thermoplastic starch (PLA/TPS) biocomposites. Int. J. Life Cycle Assess. 2014, 19, 1305-1315. [CrossRef] open in new tab
  15. Korol, J.; Lenża, J.; Burchart-Korol, D.; Bajer, K. Wytwarzanie i badanie wybranych właściwości recyklatów LDPE. Przem. Chem. 2012, 91, 2196-2201.
  16. Hottle, T.A.; Bilec, M.M.; Landis, A.E. Biopolymer production and end of life comparisons using life cycle assessment. Resour. Conserv. Recycl. 2017, 122, 295-306. [CrossRef] open in new tab
  17. Pawelzik, P.; Carus, M.; Hotchkiss, J.; Narayan, R.; Selke, S.; Wellisch, M.; Weiss, M.; Wicke, B.; Patel, M.K. Critical aspects in the life cycle assessment (LCA) of bio-based materials -Reviewing methodologies and deriving recommendations. Resour. Conserv. Recycl. 2013, 73, 211-228. [CrossRef] open in new tab
  18. Ridoutt, B.G.; Pfister, S. A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity. Global Environ. Chang. 2010, 20, 113-120. [CrossRef] open in new tab
  19. Hoekstra, A.Y.; Mekonnen, M.M.; Chapagain, A.K.; Mathews, R.E.; Richter, B.D. Global Monthly Water Scarcity: Blue Water Footprints versus Blue Water Availability. PLoS ONE 2012, 7, e32688. [CrossRef] open in new tab
  20. Hoekstra, A.Y.; Hung, P.Q. Virtual Water Trade: A Quantification of Virtual Water Flows between Nations in Relation to International Crop Trade. Value of Water Research Report Series (No. 11); open in new tab
  21. Chapagain, A.K.; Hoekstra, A.Y.; Savenije, H.H.G.; Gautam, R. The water footprint of cotton consumption: An assessment of the impact of worldwide consumption of cotton products on the water resources in the cotton producing countries. Ecol. Econ. 2006, 60, 186-203. [CrossRef] open in new tab
  22. Chapagain, A.K.; Hoekstra, A.Y. The global component of freshwater demand and supply: An assessment of virtual water flows between nations as a result of trade in agricultural and industrial products. Water Int. 2008, 33, 19-32. [CrossRef] open in new tab
  23. Galloway, J.N.; Burke, M.; Bradford, G.E.; Naylor, R.; Falcon, W.; Chapagain, A.K.; Gaskell, J.C.; McCullough, E.; Mooney, H.A.; Oleson, K.L.L.; et al. International trade in meat: The tip of the pork chop. AMBIO 2007, 36, 622-629. [CrossRef] open in new tab
  24. Chapagain, A.K.; Orr, S. An improved water footprint methodology linking global consumption to local water resources: A case study of Spanish tomatoes. J. Environ. Manag. 2009, 90, 1219-1228. [CrossRef] [PubMed] open in new tab
  25. Chen, Z.M.; Chen, G.Q. Virtual water accounting for the globalized world economy: National water footprint and international virtual water trade. Ecol. Indic. 2013, 28, 142-149. [CrossRef] open in new tab
  26. Berger, M.; Warsen, J.; Krinke, S.; Bach, V.; Finkbeiner, M. Water footprint of European cars: Potential impacts of water consumption along automobile life cycles. Environ. Sci. Technol. 2012, 46, 4091-4099. [CrossRef] [PubMed] open in new tab
  27. Hoekstra, A.Y. The Water Footprint of Industry. In Assessing and Measuring Environmental Impact and Sustainability; Klemes, J.J., Ed.; Butterworth-Heinemann: Oxford, UK, 2015; pp. 221-254. [CrossRef] open in new tab
  28. Ercin, A.E.; Hoekstra, A.Y. Water footprint scenarios for 2050: A global analysis. Environ. Int. 2014, 64, 71-82. [CrossRef] open in new tab
  29. Mazeika Bilbao, A.; Carrano, A.L.; Hewitt, M.; Thorn, B.K. On the environmental impacts of pallet management operations. Manag. Res. Rev. 2011, 34, 1222-1236. [CrossRef] open in new tab
  30. Etcheverry, M.; Barbosa, S.E. Glass Fiber Reinforced Polypropylene Mechanical Properties Enhancement by Adhesion Improvement. Materials 2012, 5, 1084-1113. [CrossRef] open in new tab
  31. Korol, J. Wpływ zastosowania mieszadła statycznego na właściwości biokompozytów PEHD/skrobia modyfikowana. Przem. Chem. 2014, 93, 457-463.
  32. Zajchowski, S.; Ryszkowska, J. Kompozyty polimerowo-drzewne-charakterystyka ogólna oraz ich otrzymywanie z materiałów odpadowych. Polimery 2009, 54, 674-682. [CrossRef] open in new tab
  33. Czaplicka-Kolarz, K.; Burchart-Korol, D.; Korol, J. Ocenaśrodowiskowa biokompozytów z zastosowaniem techniki LCA. Polimery 2013, 58, 476-481. [CrossRef] open in new tab
  34. Czaplicka-Kolarz, K.; Burchart-Korol, D.; Korol, J. Zastosowanie analizy cyklużycia i egzergii do ocený srodowiskowej wybranych polimerów. Polimery 2013, 58, 605-609. [CrossRef] open in new tab
  35. Korol, J. Polyethylene matrix composites reinforced with keratin fibers obtained from waste chicken feathers. J. Biobased Mater. Bioenergy 2012, 6, 355-360. [CrossRef] open in new tab
  36. Weiss, M.; Haufe, J.; Carus, M.; Brandao, M.; Bringezu, S.; Hermann, B.; Patel, M.K. A review of the environmental impacts of biobased materials. J. Ind. Ecol. 2012, 16, S169-S181. [CrossRef] open in new tab
  37. Bajer, K.; Kaczmarek, H. Methods of biodegradation study of polymeric materials. Polimery 2007, 52, 13-18. [CrossRef] open in new tab
  38. Formela, K.; Zedler, L.; Hejna, A.; Tercjak, A. Reactive extrusion of bio-based polymer blends and composites-Current trends and future developments. Express Polym. Lett. 2018, 12, 24-57. [CrossRef] open in new tab
  39. Tworzywa Sztuczne-Fakty 2015. Analiza Produkcji, Zapotrzebowania Oraz Odzysku Tworzyw Sztucznych w Europie. Available online: https://www.plasticseurope.org/download_file/force/1075/521 (accessed on 22 July 2019).
  40. Błędzki, A.K.; Franciszczak, P.; Osman, Z.; Elbadawi, M. Polypropylene biocomposites reinforced with softwood, abaca, jute, and kenaf fibers. Ind. Crop. Prod. 2015, 70, 91-99. [CrossRef] open in new tab
  41. AL-Oqla, F.M.; Sapuan, S.M. Natural fiber reinforced polymer composites in industrial applications: Feasibility of date palm fibers for sustainable automotive industry. J. Clean. Prod. 2014, 66, 347-354. [CrossRef] open in new tab
  42. Alves, C.; Ferrao, P.M.C.; Silva, A.J.; Reis, L.G.; Freitas, M.; Rodrigues, L.B.; Alves, D.E. Ecodesign of automotive components making use of natural jute fiber composites. J. Clean. Prod. 2010, 18, 313-327. [CrossRef] open in new tab
  43. Ploypetchara, N.; Suppakul, P.; Atong, D.; Pechyen, C. Blend of Polypropylene/Poly(lactic acid) for Medical Packaging Application: Physicochemical, Thermal, Mechanical, and Barrier Properties. Energy Procedia 2014, 56, 201-210. [CrossRef] open in new tab
  44. Bioplastics Market Data 2017. Global Production Capacities of Bioplastics 2017-2022. Available online: https://docs.european-bioplastics.org/publications/market_data/2017/Report_Bioplastics_Market_ Data_2017.pdf (accessed on 22 July 2019). open in new tab
  45. Korol, J.; Rydarowski, H. Wytwarzanie i Badanie Właściwości Biokompozytów Polimerowych na Bazie Polietylenu i Skrobi Termoplastycznej. In Polimery I Kompozyty Konstrukcyjne;
  46. Wróbel, G., Ed.; Logos Press: Cieszyn, Poland, 2011; pp. 218-225.
  47. Kuciel, S.; Rydarowski, H. Biokompozyty z Surowców Odnawialnych;
  48. Collegium Columbinum: Kraków, Poland, 2012. open in new tab
  49. Chow, C.; Xing, X.; Li, R. Moisture absorption studies of sisal fibre reinforced polypropylene composites. Compos. Sci. Technol. 2007, 67, 306-313. [CrossRef] open in new tab
  50. Hoekstra, A.Y. Virtual Water Trade. In Proceedings of the International, Expert Meeting on Virtual Water Trade. Value of Water Research Report Series (No. 12), Delft, The Netherlands, 12-13 December 2002; open in new tab
  51. Hoekstra, A.Y. A critique on the water-scarcity weighted water footprint in LCA. Ecol. Indic. 2016, 66, 564-573. [CrossRef] open in new tab
  52. Zhou, L.; Mekonnen, M.M.; Hoekstra, A.Y. The effect of inter-annual variability of consumption, production, trade and climate on crop-related green and blue water footprints and inter-regional virtual water trade: A study for China (1978-2008). Water Res. 2016, 94, 73-85. [CrossRef] [PubMed] open in new tab
  53. Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Assessment Manual: Setting the Global Standard; Earthscan: London, UK, 2011. Available online: https://waterfootprint.org/media/ downloads/TheWaterFootprintAssessmentManual_2.pdf (accessed on 17 July 2019).
  54. European Commission. 2013/179/EU: Commission Recommendation of 9 April 2013 on the Use of Common Methods to Measure and Communicate the Life Cycle Environmental Performance of Products and Organisations; European Commission: Brussels, Belgium, 2013. Available online: https://eur-lex.europa.eu/eli/reco/2013/179/oj (accessed on 17 July 2019). open in new tab
  55. Harding, K.G.; Dennis, J.S.; von Blottnitz, H.; Harrison, S.T.L. Environmental analysis of plastic production processes: Comparing petroleum-based polypropylene and polyethylene with biologically-based poly-beta-hydroxybutyric acid using life cycle analysis. J. Biotechnol. 2007, 130, 57-66. [CrossRef] [PubMed] open in new tab
  56. Althaus, H.J.; Dinkel, F.; Werner, F. Life Cycle Inventories of Renewable Materials. Final Report Ecoinvent Data V.2.0.; Swiss Centre for LCI, Empa-TSL: Dűbendorf, Switzerland, 2007.
  57. Kellenberger, D.; Althaus, H.J.; Jungbluth, N.; Künniger, T. Life Cycle Inventories of Building Products. Final Report Ecoinvent Data V.2.0.; Swiss Centre for LCI, Empa-TSL: Dűbendorf, Switzerland, 2007.
  58. U.S. Life Cycle Inventory Database. Available online: https://www.lcacommons.gov/nrel/search (accessed on 22 July 2019).
  59. Nemecek, T.; Kägi, T.; Blaser, S. Life Cycle Inventories of Agricultural Production Systems. Ecoinvent Report Version 2.0.; Swiss Centre for LCI, Empa-TSL: Dűbendorf, Switzerland, 2007. open in new tab
Verified by:
Gdańsk University of Technology

seen 37 times

Recommended for you

Meta Tags