Didn't find any results in this catalog!
But we have some results in other catalogs.Filters
total: 24103
-
Catalog
displaying 1000 best results Help
Search results for: IMAGE QUALITY ENHANCEMENT
-
Influence of image transformations and quality degradations on SURF detector efficiency
PublicationA method for task-oriented examination of SURF keypoint detector accuracy is presented in the paper. It consists of generating test images, based on a given exemplar, processed by affine transformations: random rotation and scaling, and varying degree of degradations: darkening, blurring, noising, and compression. Details of applied degradation procedure are presented, followed by essentials of SURF-based images matching. A distance...
-
Impact of Visual Image Quality on Lymphocyte Detection Using YOLOv5 and RetinaNet Algorithms
PublicationLymphocytes, a type of leukocytes, play a vital role in the immune system. The precise quantification, spatial arrangement and phenotypic characterization of lymphocytes within haematological or histopathological images can serve as a diagnostic indicator of a particular lesion. Artificial neural networks, employed for the detection of lymphocytes, not only can provide support to the work of histopathologists but also enable better...
-
High Quality Medical Image-Guides By Mosaic-Assembling Optical Fibre Technology
Publication -
Image Quality Assessment Tool for Conventional and Dynamic Magnetic Resonance Imaging Acquisitions
Publication -
Segmentation Quality Refinement in Large-Scale Medical Image Dataset with Crowd-Sourced Annotations
PublicationDeployment of different techniques of deep learning including Convolutional Neural Networks (CNN) in image classification systems has accomplished outstanding results. However, the advantages and potential impact of such a system can be completely negated if it does not reach a target accuracy. To achieve high classification accuracy with low variance in medical image classification system, there is needed the large size of the...
-
Multi-Aspect Quality Assessment Of Mobile Image Classifiers For Companion Applications In The Publishing Sector
PublicationThe paper presents the problem of quality assessment of image classifiers used in mobile phones for complimentary companion applications. The advantages of using this kind of applications have been described and a Narrator on Demand (NoD) functionality has been described as one of the examples, where the application plays an audio file related to a book page that is physically in front of the phone's camera. For such a NoD application,...
-
Machine Learning and Deep Learning Methods for Fast and Accurate Assessment of Transthoracic Echocardiogram Image Quality
PublicationHigh-quality echocardiogram images are the cornerstone of accurate and reliable measurements of the heart. Therefore, this study aimed to develop, validate and compare machine learning and deep learning algorithms for accurate and automated assessment of transthoracic echocardiogram image quality. In total, 4090 single-frame two-dimensional transthoracic echocardiogram...
-
Superresolution algorithm to video surveillance system
PublicationAn application of a multiframe SR (superresolution) algorithm applied to video monitoring is described. The video signal generated by various types of video cameras with different parameters and signal distortions which may be very problematic for superresolution algorithms. The paper focuses on disadvantages in video signal which occur in video surveillance systems. Especially motion estimation and its influence on superresolution...
-
Evaluating Accuracy of Respiratory Rate Estimation from Super Resolved Thermal Imagery
PublicationNon-contact estimation of Respiratory Rate (RR) has revolutionized the process of establishing the measurement by surpassing some issues related to attaching sensors to a body, e.g. epidermal stripping, skin disruption and pain. In this study, we perform further experiments with image processing-based RR estimation by using various image enhancement algorithms. Specifically, we employ Super Resolution (SR) Deep Learning (DL) network...
-
Vident-lab: a dataset for multi-task video processing of phantom dental scenes
Open Research DataWe introduce a new, asymmetrically annotated dataset of natural teeth in phantom scenes for multi-task video processing: restoration, teeth segmentation, and inter-frame homography estimation. Pairs of frames were acquired with a beam splitter. The dataset constitutes a low-quality frame, its high-quality counterpart, a teeth segmentation mask, and...