Filters
total: 25
filtered: 19
Chosen catalog filters
Search results for: COUPLE STRESS
-
Ellipticity in couple-stress elasticity
PublicationWe discuss ellipticity property within the linear couple-stress elasticity. In this theory, there exists a deformation energy density introduced as a function of strains and gradient of macrorotations, where the latter are expressed through displacements. So the couple-stress theory could be treated as a particular class of strain gradient elasticity. Within the micropolar elasticity, the model is called Cosserat pseudocontinuum...
-
On the effective properties of foams in the framework of the couple stress theory
PublicationIn the framework of the couple stress theory, we discuss the effective elastic properties of a metal open-cell foam. In this theory, we have the couple stress tensor, but the microrotations are fully described by displacements. To this end, we performed calculations for a representative volume element which give the matrices of elastic moduli relating stress and stress tensors with strain and microcurvature tensors.
-
Buckling Analysis of a Micro Composite Plate with Nano Coating Based on the Modified Couple Stress Theory
PublicationThe present study investigates the buckling of a thick sandwich plate under the biaxial non-uniform compression using the modified couple stress theory with various boundary conditions. For this purpose, the top and bottom faces are orthotropic graphene sheets and for the central core the isotropic soft materials are investigated. The simplified first order shear deformation theory (S-FSDT) is employed and the governing differential...
-
Study of Slip Effects in Reverse Roll Coating Process Using Non-Isothermal Couple Stress Fluid
PublicationThe non-isothermal couple stress fluid inside a reverse roll coating geometry is considered. The slip condition is considered at the surfaces of the rolls. To develop the flow equations, the mathematical modelling is performed using conservation of momentum, mass, and energy. The LAT (lubrication approximation theory) is employed to simplify the equations. The closed form solution for velocity, temperature, and pressure gradient...
-
Electro-mechanical shear buckling of piezoelectric nanoplate using modified couple stress theory based on simplified first order shear deformation theory
PublicationThis paper studies the electro-mechanical shear buckling analysis of piezoelectric nanoplate using modified couple stress theory with various boundary conditions.In order to be taken electric effects into account, an external electric voltage is applied on the piezoelectric nanoplate. The simplified first order shear deformation theory (S-FSDT) has been employed and the governing differential equations have been obtained using...
-
Geometrically nonlinear FEM analysis of 6-parameter resultant shell theory based on 2-D Cosserat constitutive model
PublicationWe develop the elastic constitutive law for the resultant statically and kinematically exact, nonlinear, 6-parameter shell theory. The Cosserat plane stress equations are integrated through-the- thickness under assumption of the Reissner-Mindlin kinematics. The resulting constitutive equations for stress resultant and couple resultants are expressed in terms of two micropolar constants: the micropolar modulus Gc and the micropolar...
-
Analytical predictions for the buckling of a nanoplate subjected to non-uniform compression based on the four-variable plate theory
PublicationIn the present study, the buckling analysis of the rectangular nanoplate under biaxial non-uniform compression using the modified couple stress continuum theory with various boundary conditions has been considered. The simplified first order shear deformation theory (S-FSDT) has been employed and the governing differential equations have been obtained using the Hamilton’s principle. An analytical approach has been applied to obtain...
-
Drilling couples and refined constitutive equations in the resultant geometrically non-linear theory of elastic shells
PublicationIt is well known that distribution of displacements through the shell thickness is non-linear, in general. We introduce a modified polar decomposition of shell deformation gradient and a vector of deviation from the linear displacement distribution. When strains are assumed to be small, this allows one to propose an explicit definition of the drilling couples which is proportional to tangential components of the deviation vector....
-
Electro-thermal buckling of elastically supported double-layered piezoelectric nanoplates affected by an external electric voltage
PublicationPurpose Thermal buckling of double-layered piezoelectric nanoplates has been analyzed by applying an external electric voltage on the nanoplates. The paper aims to discuss this issue. Design/methodology/approach Double-layered nanoplates are connected to each other by considering linear van der Waals forces. Nanoplates are placed on a polymer matrix. A comprehensive thermal stress function is used for investigating thermal buckling....
-
Temperature influences on shear stability of a nanosize plate with piezoelectricity effect
PublicationPurpose The purpose of this paper is to predict the mechanical behavior of a piezoelectric nanoplate under shear stability by taking electric voltage into account in thermal environment. Design/methodology/approach Simplified first-order shear deformation theory has been used as a displacement field. Modified couple stress theory has been applied for considering small-size effects. An analytical solution has been taken into account...
-
On time-dependent nonlinear dynamic response of micro-elastic solids
PublicationA new approach to the mechanical response of micro-mechanic problems is presented using the modified couple stress theory. This model captured micro-turns due to micro-particles' rotations which could be essential for microstructural materials and/or at small scales. In a micro media based on the small rotations, sub-particles can also turn except the whole domain rotation. However, this framework is competent for a static medium....
-
THE ANALYSIS OF THE INFLUENCE OF STRESS DISTRIBUTION ON WEAR PROFILE IN LUBRICATED SLIDING CONTACT OF UHMW-PE VS TITANIUM Ti-13Nb-13Zr ALLOY
PublicationMetal – polymer sliding contacts are a typical combination in industry and medicine. For decades such a set of materials has been the primary choice in human joints endoprosthetic technology. In this paper tribological issues of are presented from a research on the potential for practical use of Ti-13Nb-13Zr/UHMW-PE couple for orthopedic endoprosthesis. In tests on simplified models it is critically important to carefully...
-
Bending analysis of functionally graded nanoplates based on a higher-order shear deformation theory using dynamic relaxation method
PublicationIn this paper, bending analysis of rectangular functionally graded (FG) nanoplates under a uniform transverse load has been considered based on the modified couple stress theory. Using Hamilton’s principle, governing equations are derived based on a higher-order shear deformation theory (HSDT). The set of coupled equations are solved using the dynamic relaxation (DR) method combined with finite difference (FD) discretization technique...
-
Nieliniowa statyka 6-parametrowych powłok sprężysto plastycznych. Efektywne obliczenia MES
PublicationGłównym zagadnieniem omawianym w monografii jest sformułowanie sprężysto-plastycznego prawa konstytutywnego w nieliniowej 6-parametrowej teorii powłok. Wyróżnikiem tej teorii jest występujący w niej w naturalny sposób tzw. stopień 6 swobody, czyli owinięcie (drilling rotation). Podstawowe założenie pracy to przyjęcie płaskiego stanu naprężenia uogólnionego na ośrodek typu Cosseratów. Takie podejście stanowi oryginalny aspekt opracowania....
-
Electroelastic biaxial compression of nanoplates considering piezoelectric effects
PublicationIn the present theoretical work, it is assumed that a piezoelectric nanoplate is connected to the voltage meter which voltages have resulted from deformation of the plate due to in-plane compressive forces whether they are critical buckling loads or arbitrary forces. In order to derive governing equations, a simplified four-variable shear deformation plate theory has been employed using Hamilton’s principle and Von-Kármán...
-
Saint-Venant torsion based on strain gradient theory
PublicationIn this study, the Saint-Venant torsion problem based on strain gradient theory is developed. A total form of Mindlin's strain gradient theory is used to acquire a general Saint-Venant torsion problem of micro-bars formulation. A new Finite Element formulation based on strain gradient elasticity theory is presented to solve the Saint-Venant torsion problem of micro-bars. Moreover, the problem is solved for both micro and macro...
-
Nonlinear free and forced vibrations of a dielectric elastomer-based microcantilever for atomic force microscopy
PublicationThe majority of atomic force microcode (AFM) probes work based on piezoelectric actuation. However, some undesirable phenomena such as creep and hysteresis may appear in the piezoelectric actuators that limit their applications. This paper proposes a novel AFM probe based on dielectric elastomer actuators (DEAs). The DE is modeled via the use of a hyperelastic Cosserat model. Size effects and geometric nonlinearity are included...
-
Vibro-Electrical Behavior of a Viscoelastic Piezo-Nanowire in an Elastic Substrate Considering Stress Nonlocality and Microstructural Size-Dependent Effects
PublicationThis research deals with dynamics response of a Pol/BaTiO3 nanowire including viscosity influences. The wire is also impressed by a longitudinal electric field. Hamilton's principle and Lagrangian strains are employed in conjunction with a refined higher-order beam theory in order to derive equations of motion. By combining nonlocality and small size...
-
On the well posedness of static boundary value problem within the linear dilatational strain gradient elasticity
PublicationIn this paper, it is proven an existence and uniqueness theorem for weak solutions of the equilibrium problem for linear isotropic dilatational strain gradient elasticity. Considered elastic bodies have as deformation energy the classical one due to Lamé but augmented with an additive term that depends on the norm of the gradient of dilatation: only one extra second gradient elastic coefficient is introduced. The studied class...