Filters
total: 2241
filtered: 1815
-
Catalog
Chosen catalog filters
displaying 1000 best results Help
Search results for: EM-DRIVEN OPTIMIZATION
-
Size Reduction of Microwave Couplers by EM-Driven Optimization
PublicationThis work addresses simulation-driven design optimization of compact microwave couplers that explicitly aims at circuit footprint area reduction. The penalty function approach allows us to minimize the area of the circuit while ensuring a proper power division between the output ports and providing a sufficient bandwidth with respect to return loss and isolation around the operating frequency. Computational cost of the optimization...
-
Fast EM-driven optimization using variable-fidelity EM models and adjoint sensitivities
PublicationA robust and computationally efficient technique for microwave design optimization is presented. Our approach exploits variable-fidelity electromagnetic (EM) simulation models and adjoint sensitivities. The low-fidelity EM model correction is realized by means of space mapping (SM). In the optimization process, the SM parameters are optimized together with the design itself, which allows us to keep the number...
-
A design framework for rigorous constrained EM-driven optimization of miniaturized antennas with circular polarization
PublicationCompact radiators with circular polarization are important components of modern mobile communication systems. Their design is a challenging process which requires maintaining simultaneous control over several performance figures but also the structure size. In this work, a novel design framework for multi-stage constrained miniaturization of antennas with circular polarization is presented. The method involves sequential optimization...
-
Improved-Efficacy EM-Driven Optimization of Antenna Structures Using Adaptive Design Specifications and Variable-Resolution Models
PublicationOptimization-driven parameter tuning is an essential step in the design of antenna systems. Although in many cases it is still conducted through parametric studies, rigorous numerical methods become a necessity if truly optimum designs are sought for, and the problem intricacies (number of variables, multiple goals, constraints) make the interactive approaches insufficient. The two practical considerations of electromagnetic (EM)-driven...
-
Global EM-Driven Optimization of Multi-Band Antennas Using Knowledge-Based Inverse Response-Feature Surrogates
PublicationElectromagnetic simulation tools have been playing an increasing role in the design of contemporary antenna structures. The employment of electromagnetic analysis ensures reliability of evaluating antenna characteristics but also incurs considerable computational expenses whenever massive simulations are involved (e.g., parametric optimization, uncertainty quantification). This high cost is the most serious bottleneck of simulation-driven...
-
Low-Cost EM-Simulation-Driven Multi-Objective Optimization of Antennas
PublicationA surrogate-based method for efficient multi-objective antenna optimization is presented. Our technique exploits response surface approximation (RSA) model constructed from sampled low-fidelity antenna model (here, obtained through coarse-discretization EM simulation). The RSA model enables fast determination of the best available trade-offs between conflicting design goals. A low-cost RSA model construction is possible through...
-
EM-Driven Multi-Objective Optimization of Antenna Structures in Multi-Dimensional Design Spaces
PublicationFeasible multi-objective optimization of antenna structures is presented. An initial set of Pareto optimal solutions is found using a multi-objective evolutionary algorithm (MOEA) working with a fast surrogate antenna model obtained by kriging interpolation of coarse-discretization EM simulation data. To make the surrogate construction computationally feasible in multi-dimensional design space, the space subset containing non-dominated...
-
Model Correction and Optimization Framework for Expedited EM-Driven Surrogate-Assisted Design of Compact Antennas
PublicationDesign of compact antennas is a numerically challenging process that heavily relies on electromagnetic (EM) simulations and numerical optimization algorithms. For reliability of simulation results, EM models of small radiators often include connectors which—despite being components with fixed dimensions—significantly contribute to evaluation cost. In this letter, a response correction method for antenna models without connector,...
-
Expedited EM-Driven Design of Miniaturized Microwave Hybrid Couplers Using Surrogate-Based Optimization
PublicationMiniaturization of microwave hybrid couplers is important for contemporary wireless communication engineering. Using standard computer-aided design methods for development of compact structures is extremely challenging due to a general lack of computationally efficient and accurate simulation models. Poor accuracy of available equivalent circuits results from neglecting parasitic cross-couplings that greatly affect the performance...
-
EM-Driven Multi-Objective Optimization of a Generic Monopole Antenna by Means of a Nested Trust-Region Algorithm
PublicationAntenna structures for modern applications are characterized by complex and unintuitive topologies that are difficult to develop when conventional experience-driven techniques are of use. In this work, a method for automatic generation of antenna geometries in a multi-objective setup has been proposed. The approach involves optimization of a generic spline-based radiator with adjustable number of parameters using a nested trust-region-based...
-
Analysis of circular polarization antenna design trade‐offs using low‐cost EM‐driven multiobjective optimization
PublicationCircular polarization (CP) antennas are vital components of modern communication systems. Their design involves handling several requirements such as low reflection and axial ratio (AR) within the frequency range of interest. Small size is an important criterion for antenna mobility which is normally achieved as a by‐product of performance‐oriented modifications of the structure topology. In this work, multiobjective optimization...
-
Fast EM-Driven Nature-Inspired Optimization of Antenna Input Characteristics Using Response Features and Variable-Resolution Simulation Models
PublicationUtilization of optimization technique is a must in the design of contemporary antenna systems. Often, global search methods are necessary, which are associated with high computational costs when conducted at the level of full-wave electromagnetic (EM) models. In this study, we introduce an innovative method for globally optimizing reflection responses of multi-band antennas. Our approach uses surrogates constructed based on response...
-
EM-Driven Size Reduction and Multi-Criterial Optimization of Broadband Circularly-Polarized Antennas Using Pareto Front Traversing and Design Extrapolation
PublicationMaintaining small size has become an important consideration in the design of contemporary antenna structures. In the case of broadband circularly polarized (CP) antennas, miniaturization is a challenging process due to the necessity of simultaneous handling of electrical and field properties (reflection, axial ratio, gain), as well as ensuring sufficient frequency range of operation, especially at the lower edge of the antenna...
-
Patch size setup and performance/cost trade-offs in multi-objective EM-driven antenna optimization using sequential domain patching
PublicationPurpose This paper aims to assess control parameter setup and its effect on computational cost and performance of deterministic procedures for multi-objective design optimization of expensive simulation models of antenna structures. Design/methodology/approach A deterministic algorithm for cost-efficient multi-objective optimization of antenna structures has been assessed. The algorithm constructs a patch connecting extreme Pareto-optimal...
-
On EM-driven size reduction of antenna structures with explicit constraint handling
PublicationSimulation-driven miniaturization of antenna components is a challenging task mainly due to the presence of expensive constraints, evaluation of which involves full-wave electromagnetic (EM) analysis. The recommended approach is implicit constraint handling using penalty functions, which, however, requires a meticulous selection of penalty coefficients, instrumental in ensuring optimization process reliability. This paper proposes...
-
Novel Structure and EM-Driven Design of Small UWB Monopole Antenna
PublicationA novel structure of a small UWB monopole antenna is presented. In our approach, a compact size is achieved by means of a meander line for current path enlargement as well as the two parameterized slits that introduce additional degrees of freedom helping to ensure good impedance matching. The antenna design is carried out using surrogate-based optimization involving variable-fidelity EM simulations. This allows us to simultaneously...
-
Rapid EM-driven antenna dimension scaling through inverse modeling
PublicationIn this letter, a computationally feasible technique for dimension scaling of antenna structures is introduced. The proposed methodology is based on inverse surrogate modeling where the geometry parameters of the antenna structure of interest are explicitly related to the operating frequency. The surrogate model is identified based on a few antenna designs optimized for selected reference frequencies. For the sake of computational...
-
Response features for fast EM-driven design of miniaturized impedance matching transformers
PublicationA framework for low-cost EM-driven design optimization of compact impedance matching transformers is presented. Our technique is based on a bottom-up design where design requirements for the transformer circuit are translated into specifications for its building blocks. These elementary cells are optimized using response features. Subsequently, the entire circuit is fine-tuned using local response surface approximation models and...
-
Novel structure and EM-driven design of miniaturized microstrip rat-race coupler
PublicationIn this paper, a novel structure and design procedure of a miniaturized microstrip rat-race coupler (RRC) is described. Small size of the RRC is achieved by folding the transmission lines of the conventional circuit into its interior, as well as by implementation of the structure on three layers. The final size of the coupler realized for the operating frequency of 1 GHz is only 220 mm2, which gives over 95% footprint reduction...
-
EM-driven topology evolution for bandwidth enhancement of hybrid quadrature patch couplers
PublicationA broad operational bandwidth is one of the key performance figures of hybrid patch couplers. Due to the lack of systematic design procedures, bandwidth enhancement is normally obtained through manual modifications of the structure geometry. In this work, an optimization-based topology evolution for EM-driven design of patch couplers with enhanced bandwidth has been proposed. The method exploits a novel spline-based EM model where...
-
Implicit Space Mapping for Variable-Fidelity EM-Driven Design of Compact Circuits
PublicationSpace mapping (SM) belongs to the most successful surrogate-based optimization (SBO) methods in microwave engineering. Among available SM variations, implicit SM (ISM) is particularly attractive due to its simplicity and separation of extractable surrogate model parameters and design variables of the circuit/system at hand. Unlike other SM approaches, ISM exploits a set of preassigned parameters to align the surrogate with the...
-
A bisection‐based heuristic for rapid EM‐driven multiobjective design of compact impedance transformers
PublicationDesign of microwave structures is a multiobjective task where several conflicting requirements have to be considered at the same time. For contemporary circuits characterized by complex geometries, multiobjective optimization cannot be performed using standard population‐based algorithms due to high cost of electromagnetic (EM) evaluations. In this work, we propose a deterministic approach for fast EM‐driven multiobjective design...
-
Reliable EM-driven size reduction of antenna structures by means of adaptive penalty factors
PublicationMiniaturization has become of paramount importance in the design of modern antenna systems. In particular, compact size is essential for emerging application areas such as internet of things, wearable and implantable devices, 5G technology, or medical imaging. On the other hand, reduction of physical dimensions generally has a detrimental effect on antenna performance. From the perspective of numerical optimization, miniaturization...
-
EM‐driven constrained miniaturization of antennas using adaptive in‐band reflection acceptance threshold
PublicationNumerical optimization of geometry parameters is a critical stage of the design process of compact antennas. It is also challenging because size reduction is constrained by the necessity of fulfilling imposed electrical performance requirements. Furthermore, full‐wave electromagnetic (EM) analysis needs to be used for reliable performance evaluation of the antenna structure, which is computationally expensive. In this paper, an...
-
Expedited EM-driven multi-objective antenna design in highly-dimensional parameter spaces
PublicationA technique for low-cost multi-objective optimization of antennas in highly-dimensional parameter spaces is presented. The optimization procedure is expedited by exploiting fast surrogate models, including coarse-discretization EM antenna simulations and response surface approximations (RSA). The latter is utilized to yield an initial set of Pareto non-dominated designs which are further refined using response correction methods....
-
EM-Driven Multi-Objective Design of Impedance Transformers By Pareto Ranking Bisection Algorithm
PublicationIn the paper, the problem of fast multi-objective optimization of compact impedance matching transformers is addressed by utilizing a novel Pareto ranking bisection algorithm. It approximates the Pareto front by dividing line segments connecting the designs found in the previous iterations, and refining the obtained candidate solutions by means of poll-type search involving Pareto ranking. The final Pareto set is obtained using...
-
Local-Global Space Mapping for Rapid EM-Driven Design of Compact RF Structures
PublicationIn this work, we introduce a robust and efficient technique for rapid design of compact RF circuits. Our approach exploits two-level space mapping (SM) correction of an equivalent circuit model of the structure under design. The first SM layer (local correction) is utilized to ensure good matching between the equivalent circuit and the electromagnetic model at the component level. On the other hand, the global correction allows...
-
Rapid EM-Driven Design of Compact RF Circuits By Means of Nested Space Mapping
PublicationA methodology for rapid design of RF circuits constituted by compact microstrip resonant-cells (CMRCs) is presented. Our approach exploits nested space mapping (NSM) technology, where the inner SM layer is used to correct the equivalent circuit model at the CMRC level, whereas the outer layer enhances the coarse model of the entire structure under design. We demonstrate that NSM dramatically improves performance of surrogate-based...
-
Fast EM-driven size reduction of antenna structures by means of adjoint sensitivities and trust regions
PublicationIn this letter, a simple yet robust and computationally efficient optimization technique for explicit size reduction of antenna structures is presented. Our approach directly handles the antenna size as the main design objective, while ensuring satisfactory electrical performance by means of suitably defined penalty functions. For the sake of accuracy, the antenna structure is evaluated using high-fidelity EM simulation. In order...
-
Fast Antenna Optimization Using Gradient Monitoring and Variable-Fidelity EM Models
PublicationAccelerated simulation-driven design optimization of antenna structures is proposed. Variable-fidelity electromagnetic (EM) analysis is used as well as the trust-region framework with limited sensitivity updates. The latter are controlled by monitoring the changes of the antenna response gradients. Our methodology is verified using three compact wideband antennas. Comprehensive benchmarking demonstrates its superiority over both...
-
Cost-Efficient EM-Driven Size Reduction of Antenna Structures by Multi-Fidelity Simulation Models
PublicationDesign of antenna systems for emerging application areas such as the Internet of Things (IoT), fifth generation wireless communications (5G), or remote sensing, is a challenging endeavor. In addition to meeting stringent performance specifications concerning electrical and field properties, the structure has to maintain small physical dimensions. The latter normally requires searching for trade-off solutions because miniaturization...
-
Nested Space Mapping Technology for Expedite EM-driven Design of Compact RF/microwave Components
PublicationA robust simulation-driven methodology for rapid and reliable design of RF/microwave circuits comprising compact microstrip resonant cells (CMRCs) is presented. We introduce a nested space mapping (NSM) technology, in which the inner space mapping layer is utilized to improve the generalization capabilities of the equivalent circuit model corresponding to a constitutive element of the circuit under consideration. The outer layer...
-
Expedited Metaheuristic-Based Antenna Optimization Using EM Model Resolution Management
PublicationDesign of modern antenna systems heavily relies on numerical opti-mization methods. Their primary purpose is performance improvement by tun-ing of geometry and material parameters of the antenna under study. For relia-bility, the process has to be conducted using full-wave electromagnetic (EM) simulation models, which are associated with sizable computational expendi-tures. The problem is aggravated in the case of global optimization,...
-
Rapid design optimization of antennas using variable-fidelity EM models and adjoint sensitivities
PublicationPurpose – Development of techniques for expedited design optimization of complex and numerically expensive electromagnetic (EM) simulation models of antenna structures validated both numerically and experimentally. The paper aims to discuss these issues. Design/methodology/approach – The optimization task is performed using a technique that combines gradient search with adjoint sensitivities, trust region framework, as well as...
-
Fast EM-Driven Parameter Tuning of Microwave Circuits with Sparse Sensitivity Updates via Principal Directions
PublicationNumerical optimization has become more important than ever in the design of microwave components and systems, primarily as a consequence of increasing performance demands and growing complexity of the circuits. As the parameter tuning is more and more often executed using full-wave electromagnetic (EM) models, the CPU cost of the overall process tends to be excessive even for local optimization. Some ways of alleviating these issues...
-
Performance-driven yield optimization of high-frequency structures by kriging surrogates
PublicationUncertainty quantification is an important aspect of engineering design, as manufacturing toler-ances may affect the characteristics of the structure. Therefore, quantification of these effects is in-dispensable for adequate assessment of the design quality. Toward this end, statistical analysis is performed, for reliability reasons, using full-wave electromagnetic (EM) simulations. Still, the computational expenditures associated...
-
Accurate simulation-driven modeling and design optimization of compact microwave structures
PublicationCost efficient design optimization of microwave structures requires availability of fast yet reliable replacement models so that multiple evaluations of the structure at hand can be executed in reasonable timeframe. Direct utilization of full-wave electromagnetic (EM) simulations is often prohibitive. On the other hand, accurate data-driven modeling normally requires a very large number of training points and it is virtually infeasible...
-
Fast simulation-driven design optimization of UWB band-notch antennas
PublicationIn this letter, a simple yet reliable and automated methodology for rapid design optimization of ultra-wideband (UWB) band-notch antennas is presented. Our approach is a two-stage procedure with the first stage focused on the design of the antenna itself, and the secondstage aiming at identification of the appropriate dimensions of the resonator with the purpose of allocating the band-notch in the desired frequency range. For the...
-
Expedite EM-driven generation of Pareto-optimal trade-off curves for variable-turn on-chip inductors
PublicationThis work presents a novel approach to computationally efficient Pareto front identification for variable-turn on-chip inductors. The final outcome is a set of solutions that correspond to the best trade-offs between conflicting design objectives. Here, we consider minimising inductor area and, simultaneously, maximising its quality factor, while maintaining a specified inductance value at a given operating frequency. As opposed...
-
On Nature-Inspired Design Optimization of Antenna Structures Using Variable-Resolution EM Models
PublicationNumerical optimization has been ubiquitous in antenna design for over a decade or so. It is indispensable in handling of multiple geometry/material parameters, performance goals, and constraints. It is also challenging as it incurs significant CPU expenses, especially when the underlying computational model involves full-wave electromagnetic (EM) analysis. In most practical cases, the latter is imperative to ensure evaluation reliability....
-
A Generalized SDP Multi-Objective Optimization Method for EM-Based Microwave Device Design
PublicationIn this article, a generalized sequential domain patching (GSDP) method for efficient multi-objective optimization based on electromagnetics (EM) simulation is proposed. The GSDP method allowing fast searching for Pareto fronts for two and three objectives is elaborated in detail in this paper. The GSDP method is compared with the NSGA-II method using multi-objective problems in the DTLZ series, and the results show the GSDP method...
-
Design space reduction and variable-fidelity EM simulations for feasible Pareto optimization of antennas
PublicationA computationally efficient procedure for multi-objective optimization of antenna structures is presented. In our approach, a response surface approximation (RSA) model created from sampled coarse-discretization EM antenna simulations is utilized to yield an initial set of Pareto-optimal designs using a multi-objective evolutionary algorithm. The final Pareto front representation for the high-fidelity model is obtained using surrogate-based...
-
Pareto Ranking Bisection Algorithm for EM-Driven Multi-Objective Design of Antennas in Highly-Dimensional Parameter Spaces
PublicationA deterministic technique for fast surrogate-assisted multi-objective design optimization of antennas in highly-dimensional parameters spaces has been discussed. In this two-stage approach, the initial approximation of the Pareto set representing the best compromise between conflicting objectives is obtained using a bisection algorithm which finds new Pareto-optimal designs by dividing the line segments interconnecting previously...
-
Surrogate-assisted EM-driven miniaturization of wideband microwave couplers by means of co-simulation low-fidelity models
PublicationThis article proposes a methodology for rapid design optimization of miniaturized wideband couplers. More specifically, a class of circuits is considered, in which conventional transmission lines are replaced by their abbreviated counterparts referred to as slow-wave compact cells. Our focus is on explicit reduction of the structure size as well as on reducing the CPU cost of the design process. For the sake of computational feasibility,...
-
Rapid Yield Optimization of Miniaturized Microwave Passives by Response Features and Variable-Fidelity EM Simulations
PublicationThe operation of high-frequency devices, including microwave passive components, can be impaired by fabrication tolerances but also incomplete knowledge concerning operating conditions (temperature, input power levels) and material parameters (e.g., substrate permittivity). Although the accuracy of manufacturing processes is always limited, the effects of parameter deviations can be accounted for in advance at the design phase...
-
Expedited simulation-driven design optimization of UWB antennas by means of response features
PublicationIn this work, a method for fast design optimization of broadband antennas is considered. The approach is based on a feature-based optimization (FBO) concept where reflection characteristics of the structure at hand are formulated in terms of suitably defined feature points. Redefinition of the design problem allows for reducing the design optimization cost, because the dependence of feature point coordinates on antenna dimensions...
-
Rapid Simulation-Driven Multiobjective Design Optimization of Decomposable Compact Microwave Passives
PublicationIn this paper, a methodology for fast multiobjective optimization of the miniaturized microwave passives has been presented. Our approach is applicable to circuits that can be decomposed into individual cells [e.g., compact microstrip resonant cells (CMRCs)]. The structures are individually modeled using their corresponding equivalent circuits and aligned with their accurate, EM simulated...
-
Fast Multi-Objective Antenna Optimization Using Sequential Patching and Variable-Fidelity EM Models
PublicationIn this work, a technique for fast multi-objective design optimization of antenna structures is presented. In our approach, the initial approximation of the Pareto set representing the best possible trade-offs between conflicting design objectives is obtained by means of sequential patching of the design space. The latter is a stencil-based search that aims at creating a path that connects the extreme Pareto-optimal designs (obtained...
-
Low-cost EM-Simulation-based Multi-objective Design Optimization of Miniaturized Microwave Structures
PublicationIn this work, a simple yet reliable technique for fast multi-objective design optimization of miniaturized microwave structures is discussed. The proposed methodology is based on point-by-point identification of a Pareto-optimal set of designs representing the best possible trade-offs between conflicting objectives such as electrical performance parameters as well as the size of the structure of interest. For the sake of computational...
-
Machine-Learning-Based Global Optimization of Microwave Passives with Variable-Fidelity EM Models and Response Features
PublicationMaximizing microwave passive component performance demands precise parameter tuning, particularly as modern circuits grow increasingly intricate. Yet, achieving this often requires a comprehensive approach due to their complex geometries and miniaturized structures. However, the computational burden of optimizing these components via full-wave electromagnetic (EM) simulations is substantial. EM analysis remains crucial for circuit...