Filters
total: 25
filtered: 24
Chosen catalog filters
Search results for: microsomes
-
Detoxification of the tricyclic antidepressant opipramol and its analog – IS-noh by UGT enzymes before and after activation by phase I enzymes in rat liver microsomes
PublicationThe present studies were carried out to evaluate the simultaneous one-pot metabolism of opipramol (IS-opi) and analog (IS-noh) by phase I and phase II enzymes present in rat liver microsomes (RLM) as an alternative to separate testing with recombinant enzymes. This approach allows for more time-saving and cost-effective screening of the metabolism of newly discovered drugs. We also considered that the lack of results for phase...
-
Flavin monooxygenases, FMO1 and FMO3, not cytochrome p450 isoenzymes, contribute to metabolism of anti-tumour triazoloacridinone, C-1305, in liver microsomes and HepG2 cells.
PublicationCelem pracy było określenie roli wybranych enzymów frakcji mikrosomalnej komórek wątroby w metabolizmie pochodnej triazoloakrydonu, związku C-1305. Wykazano, że badana pochodna ulega transformacji wobec frakcji enzymów izolowanych z hepatocytów szczurzych i ludzkich oraz jest metabolizowana przez komórki linii HepG2. Badania wykazały ponadto, że enzymami odpowiedzialnymi za obserwowane przemiany były monooksygenazy flawinowe, FMO1...
-
In vitro enzyme kinetics and NMR-based product elucidation for glutathione S-conjugation of the anticancer unsymmetrical bisacridine C-2028 in liver microsomes and cytosol: major role of glutathione S-transferase M1-1 isoenzyme
PublicationThis work is the next step in studying the interplay between C-2028 (anticancer-active unsymmetrical bisacridine developed in our group) and the glutathione S-transferase/glutathione (GST/GSH) system. Here, we analyzed the concentration- and pH-dependent GSH conjugation of C-2028 in rat liver microsomes and cytosol. We also applied three recombinant human GST isoenzymes, which altered expression was found in various tumors. The...
-
Role of Human UDP-Glucuronosyltransferases in the Biotransformation of the Triazoloacridinone and Imidazoacridinone Antitumor Agents C-1305 and C-1311 : Highly Selective Substrates for UGT1A10
Publication5-Diethylaminoethylamino-8-hydroxyimidazoacridinone, C-1311 (NSC-645809), is an antitumor agent shown to be effective against breast cancer in phase II clinical trials. A similar compound, 5-dimethylaminopropylamino-8-hydroxytriazoloacridinone, C-1305, shows high activity against experimental tumors and is expected to have even more beneficial pharmacological properties than C-1311. Previously published studies showed that these...
-
Electrochemistry meets enzymes: Investigation of the biotransformation pathway of C-1311 based on electrochemical simulation in comparison to in vitro methods.
PublicationThe knowledge of the metabolic pathways and the biotransformation of new drugs is one of the major challenges in pharmaceutical research. It is crucial for elucidation of degradation routes of the new biologically active compounds, especially in the area of possible toxicity. Conventional in vitro drug metabolism studies are based on incubating drug candidate with e.g. hepatocytes or, most importantly, liver cell microsomes and...
-
Electrochemical simulation of enzymatic transformations studied for the selected antitumor acridine derivatives
PublicationThe elucidation of the metabolic pathways and the biotransformation mechanisms of potential drugs is a crucial point in drug development. It allows to know the activation routes of the new biologically active compounds, especially in respect to their possible toxicity. Generally, in vivo or in vitro experiments with liver microsomes or hepatocytes are performed. However, these testing schemes are tedious, time consuming and of...
-
Synthesis, molecular structure, and metabolic stability of new series of N' -(2-alkylthio-4-chloro-5-methylbenzenesulfonyl)-1-(5-phenyl-1 H -pyrazol-1-yl)amidine as potential anti-cancer agents
PublicationA series of new N'-(2-alkylthio-4-chloro-5-methylbenzenesulfonyl)-1-(5-phenyl-1H-pyrazol-1-yl)amidine derivatives have been synthesized and evaluated in vitro by MTT assays for their antiproliferative activity against cell lines of colon cancer HCT-116, cervical cancer HeLa and breast cancer MCF-7. The studied compounds display selective activity mainly against HCT-116 and HeLa cells. Thus, five compounds show selective cytotoxic...
-
Synthesis, Molecular Structure, Metabolic Stability and QSAR Studies of a Novel Series of Anticancer N-Acylbenzenesulfonamides
PublicationA series of novel N-acyl-4-chloro-5-methyl-2-(R1-methylthio)benzenesulfonamides 18–47 have been synthesized by the reaction of N-[4-chloro-5-methyl-2-(R1-methylthio) benzenesulfonyl]cyanamide potassium salts with appropriate carboxylic acids. Some of them showed anticancer activity toward the human cancer cell lines MCF-7, HCT-116 and HeLa, with the growth percentages (GPs) in the range from 7% to 46%. Quantitative structure-activity relationship...
-
CYP3A4-dependent cellular response does not relate to CYP3A4-catalysed metabolites of C-1748 and C-1305 acridine antitumor agents in HepG2 cells
PublicationHigh CYP3A4 expression sensitizes tumor cells to certain antitumor agents while for others it can lower their therapeutic ef fi cacy. We have elucidated the in fl uence of CYP3A4 overexpression on the cellular response induced by antitumor acridine derivatives, C-1305 and C-1748, in two hepatocellular carcinoma (HepG2) cell lines, Hep3A4 stably transfected with CYP3A4 isoenzyme, and HepC34 expressing empty vector. The compounds...
-
Novel 2-alkythio-4-chloro-N-[imino(heteroaryl)methyl]benzenesulfonamide Derivatives: Synthesis, Molecular Structure, Anticancer Activity and Metabolic Stability
PublicationA series of novel 2-alkythio-4-chloro-N-[imino-(heteroaryl)methyl]benzenesulfonamide derivatives, 8–24, were synthesized in the reaction of the N-(benzenesulfonyl)cyanamide potassium salts 1–7 with the appropriate mercaptoheterocycles. All the synthesized compounds were evaluated for their anticancer activity in HeLa, HCT-116 and MCF-7 cell lines. The most promising compounds, 11–13, molecular hybrids containing benzenesulfonamide...
-
Phase I and phase II metabolism simulation of antitumor-active 2-hydroxyacridinone with electrochemistry coupled on-line with mass spectrometry.
PublicationHere, we report the metabolic profile and the results of associated metabolic studies of 2-hydroxyacridinone (2-OH-AC), the reference compound for antitumor-active imidazo- and triazoloacridinones. Electrochemistry coupled with mass spectrometry was applied to simulate the general oxidative metabolism of 2-OH-AC for the first time. The reactivity of 2-OH-AC products to biomolecules was also examined. The usefulness of the electrochemistry...
-
Novel 5-Substituted 2-(Aylmethylthio)-4-chloro-N-(5-aryl-1,2,4-triazin-3-yl)benzenesulfonamides: Synthesis, Molecular Structure, Anticancer Activity, Apoptosis-Inducing Activity and Metabolic Stability
PublicationA series of novel 5-substituted 2-(arylmethylthio)-4-chloro-N-(5-aryl-1,2,4-triazin-3-yl) benzenesulfonamide derivatives 27–60 have been synthesized by the reaction of aminoguanidines with an appropriate phenylglyoxal hydrate in glacial acetic acid. A majority of the compounds showed cytotoxic activity toward the human cancer cell lines HCT-116, HeLa and MCF-7, with IC50 values below 100 M. It was found that for the analogues 36–38...
-
Diminshed toxicity of C-1748, 4-methyl-9-hydroxyethylamino-1-nitroacridine, compared with its demethyl analog, C-857, corresponds to its resistance to metabolism in HepG2 cells
PublicationThe narrow "therapeutic window" of anti-tumour therapy may be the result of drug metabolism leading to the activation or detoxification of antitumour agents. The aim of this work is to examine (i) whether the diminished toxicity of a potent antitumour drug, C-1748, 9-(2'-hydroxyethylamino)-4-methyl-1-nitroacridine, compared with its 4-demethyl analogue, C-857, results from the differences between the metabolic pathways for the...
-
Modulation of UDP-glucuronidation by acridinone antitumor agents C-1305 and C-1311 in HepG2 and HT29 cell lines, despite slight impact in noncellular systems.
PublicationBackground Among the studied antitumor acridinone derivatives developed in our laboratory, 5-dimethylaminopropylamino-8-hydroxytriazoloacridinone (C-1305) and 5-diethylaminoethylamino-8-hydroxyimidazoacridinone (C-1311) exhibited cytotoxic and antitumor properties against several cancer types and were selected to be evaluated in preclinical and early-phase clinical trials. In the present work, we investigated the impact of C-1305...
-
Drug-drug interaction potential of antitumor acridine agent C-1748: The substrate of UDP-glucuronosyltransferases 2B7, 2B17 and the inhibitor of 1A9 and 2B7
PublicationBackground The compound 9-(2′-hydroxyethylamino)-4-methyl-1-nitroacridine (C-1748), the promising antitumor agent developed in our laboratory was determined to undergo phase I metabolic pathways. The present studies aimed to know its biotransformation with phase II enzymes – UDP-glucuronosyltransferases (UGTs) and its potential to be engaged in drug-drug interactions arising from the modulation of UGT activity. Methods UGT-mediated...
-
Electrochemical simulation of metabolism for antitumor-active imidazoacridinone C-1311 and in silico prediction of drug metabolic reactions
PublicationThe metabolism of antitumor-active 5-diethylaminoethylamino-8-hydroxyimidazoacridinone (C-1311) has been investigated widely over the last decade but some aspects of molecular mechanisms of its metabolic transformation are still not explained. In the current work, we have reported a direct and rapid analytical tool for better prediction of C-1311 metabolism which is based on electrochemistry (EC) coupled on-line with electrospray...
-
Novel insights into conjugation of antitumor-active unsymmetrical bisacridine C-2028 with glutathione: characteristics of non-enzymatic and glutathione S-transferase-mediated reactions
PublicationUnsymmetrical bisacridines (UAs) are a novel potent class of antitumor-active therapeutics. A significant route of phase II drug metabolism is conjugation with glutathione (GSH), which can be non-enzymatic and/or catalyzed by GSH-dependent enzymes. The aim of this work was to investigate the GSH-mediated metabolic pathway of a representative UA, C 2028. GSH supplemented incubations of C-2028 with rat, but not with human, liver...
-
Pregnane X receptor dependent up-regulation of CYP2C9 and CYP3A4 in tumor cells by antitumor acridine agents, C-1748 and C-1305, selectively diminished under hypoxia
PublicationInduction of proteins involved in drug metabolism and in drug delivery has a significant impact on drug-drug interactions and on the final therapeutic effects. Two antitumor acridine derivatives selected for present studies, C-1748 (9-(2’-hydroxyethylamino)-4-methyl-1-nitroacridine) and C-1305 (5-dimethylaminopropylamino-8-hydroxy-triazoloacridinone), expressed high and low susceptibility to metabolic transformations with liver...
-
Mass spectrometry based identification of geometric isomers during metabolic stability study of a new cytotoxic sulfonamide derivatives supported by quantitative structure-retention relationships
PublicationA set of 15 new sulphonamide derivatives, presenting antitumor activity have been subjected to a metabolic stability study. The results showed that besides products of biotransformation, some additional peaks occurred in chromatograms. Tandem mass spectrometry revealed the same mass and fragmentation pathway, suggesting that geometric isomerization occurred. Thus, to support this hypothesis, quantitative structure-retention relationships...
-
Metabolism of antitumour agent 1-nitroacridine derivative, C-1748 in pancreatic cancer cell lines
PublicationPancreatic cancer has the highest mortality rate of all major cancers because of limited treatment options. Surgical removal of the tumour is possible only in its early stage, nevertheless the asymptomatic development very often makes unable an accurate diagnose. In the case of metastatic pancreatic cancer only chemotherapy, mainly with gemcitabine, can be offered to patients. However, common resistance towards gemcitabine imposes...
-
Prediction of Overall In Vitro Microsomal Stability of Drug Candidates Based on Molecular Modeling and Support Vector Machines. Case Study of Novel Arylpiperazines Derivatives
PublicationOther than efficacy of interaction with the molecular target, metabolic stability is the primary factor responsible for the failure or success of a compound in the drug development pipeline. The ideal drug candidate should be stable enough to reach its therapeutic site of action. Despite many recent excellent achievements in the field of computational methods supporting drug metabolism studies, a well-recognized procedure to model...
-
Novel Resveratrol-Based Substrates for Human Hepatic, Renal, and Intestinal UDP-Glucuronosyltransferases
PublicationTrans-Resveratrol (tRes) has been shown to have powerful antioxidant, anti-inflammatory, anti-carcinogenic, and anti-aging properties; however, its use as a therapeutic agent is limited by its rapid metabolism into its conjugated forms by UDP-Glucuronosyltransferases (UGTs). The aim of the current study was to test the hypothesis that the limited bioavailability of tRes can be improved by modifying its structure to create analogs...
-
The II phase metabolism of endogenous and exogenous compounds, including antitumor chemotherapeutics
PublicationThe II phase metabolism, it is a set of metabolism and excretion pathways of endogenous as well as exogenous compounds including xenobiotics. UDP-glucuronyltransferases (UGTs; EC 2.4.1.17) are the most crucial representatives of II phase enzymes, which are responsible for the transformation of bilirubine and bile acids, steroids and thyroid hormones and lipids. Exogenous compounds, including drugs, carcinogens, environmental pollutants...
-
Metabolic transformations of antitumor imidazoacridinone, C-1311, with microsomal fractions of rat and human liver
Publication