Search results for: MULTI-OBJECTIVE QUANTUM-INSPIRED SEAGULL OPTIMIZATION ALGORITHM
-
Collision‐Aware Routing Using Multi‐Objective Seagull Optimization Algorithm for WSN‐Based IoT
PublicationIn recent trends, wireless sensor networks (WSNs) have become popular because of their cost, simple structure, reliability, and developments in the communication field. The Internet of Things (IoT) refers to the interconnection of everyday objects and sharing of information through the Internet. Congestion in networks leads to transmission delays and packet loss and causes wastage of time and energy on recovery. The routing protocols...
-
W-dominance: Tradeoff-inspired dominance relation for preference-based evolutionary multi-objective optimization
PublicationThe paper presents a method of incorporating decision maker preferences into multi-objective meta-heuristics. It is based on tradeoffcoefficients and extends their applicability from bi-objective to multi-objective. The method assumes that a decision maker specifies a priori each objective’s importance as a weight interval. Based on this, w-dominance relation is introduced, which extends Pareto dominance. By replacing reference...
-
Pareto Ranking Bisection Algorithm for Expedited Multi-Objective Optimization of Antenna Structures
PublicationThe purpose of this letter is introduction of a novel methodology for expedited multi-objective design of antenna structures. The key component of the presented approach is fast identification of the initial representation of the Pareto front (i.e., a set of design representing the best possible trade-offs between conflicting objectives) using a Pareto-ranking bisection algorithm. The algorithm finds a discrete set of Pareto-optimal...
-
Low-Cost Multi-Objective Optimization of Antennas By Means Of Generalized Pareto Ranking Bisection Algorithm
PublicationThis paper introduces a generalized Pareto ranking bisection algorithm for low-cost multi-objective design optimization of antenna structures. The algorithm allows for identifying a set of Pareto optimal sets of parameters (that represent the best trade-offs between considered objectives) by iterative partitioning of the intervals connecting previously found designs and executing a Pareto-ranking-based poll search. The initial...
-
Design and multi-objective optimization of combinational digital circuits using evolutionaty algorithm with multi-layer chromosomes
PublicationW artykule przedstawiono zastosowanie algorytmów ewolucyjnych z wielowarstwowymi chromosomami do projektowania i optymalizacji wielokryterialnej kombinatorycznych układów cyfrowych. Kryteriami optymalizacji były: liczba bramek, liczba tranzystorów w układzie i czas propagacji sygnałów. Proponowaną metodą zaprojektowano i optymalizowano cztery układy wzięte z literatury. Uzyskane rezultaty porównano z wynikami otrzymanymi innymi...
-
EM-Driven Multi-Objective Optimization of a Generic Monopole Antenna by Means of a Nested Trust-Region Algorithm
PublicationAntenna structures for modern applications are characterized by complex and unintuitive topologies that are difficult to develop when conventional experience-driven techniques are of use. In this work, a method for automatic generation of antenna geometries in a multi-objective setup has been proposed. The approach involves optimization of a generic spline-based radiator with adjustable number of parameters using a nested trust-region-based...
-
An optimal nonlinear fractional order controller for passive/active base isolation building equipped with friction-tuned mass dampers
PublicationThis paper presents an optimal nonlinear fractional-order controller (ONFOC) designed to reduce the seismic responses of tall buildings equipped with a base-isolation (BI) system and friction-tuned mass dampers (FTMDs). The parameters for the BI and FTMD systems, as well as their combinations (BI-FTMD and active BI-FTMD or ABI-FTMD), were optimized separately using a multi-objective quantum-inspired seagull optimization algorithm...
-
A new quantum-inspired approach to reduce the blocking probability of demands in resource-constrained path computation scenarios
PublicationThis article presents a new approach related with end-to-end routing, which, owing to quantum-inspired mecha-nisms of prediction of availability of network resources, results in improved blocking probability of incoming requests to establish transmission paths. The proposed scheme has been analyzed for three network topologies and several scenarios of network load. Obtained results show a significant (even twofold) reduction of...
-
Multi-objective optimization of microextraction procedures
PublicationOptimization of extraction process requiresfinding acceptable conditions for many analytes and goodperformance in terms of process time or solvent consumption. These optimization criteria are oftencontradictory to each other, the performance of the system in given conditions is good for some criteriabut poor for others. Therefore, such problems require special assessment tools that allow to combinethese contradictory criteria into...
-
EM-Driven Multi-Objective Optimization of Antenna Structures in Multi-Dimensional Design Spaces
PublicationFeasible multi-objective optimization of antenna structures is presented. An initial set of Pareto optimal solutions is found using a multi-objective evolutionary algorithm (MOEA) working with a fast surrogate antenna model obtained by kriging interpolation of coarse-discretization EM simulation data. To make the surrogate construction computationally feasible in multi-dimensional design space, the space subset containing non-dominated...
-
Low-Cost Multi-Objective Optimization Yagi-Uda Antenna in Multi-Dimensional Parameter Space
PublicationA surrogate-based technique for fast multi-objective optimization of a multi-parameter planar Yagi-Uda antenna structure is presented. The proposed method utilizes response surface approximation (RSA) models constructed using training samples obtained from evaluation of the low-fidelity antenna model. Utilization of the RSA models allowsfor fast determination of the best possible trade-offs between conflicting objectives in multi-objective...
-
Rotational Design Space Reduction for Cost-Efficient Multi-Objective Antenna Optimization
PublicationCost-efficient multi-objective design of antenna structures is presented. Our approach is based on design space reduction algorithm using auxiliary single-objective optimization runs and coordinate system rotation. The initial set of Pareto-optimal solutions is obtained by optimizing a response surface approximation model established in the reduced space using coarse-discretization EM simulation data. The optimization engine is...
-
Multi-objective optimization of expensive electromagnetic simulation models
PublicationVast majority of practical engineering design problems require simultaneous handling of several criteria. For the sake of simplicity and through a priori preference articulation one can turn many design tasks into single-objective problems that can be handled using conventional numerical optimization routines. However, in some situations, acquiring comprehensive knowledge about the system at hand, in particular, about possible...
-
MULTI-OBJECTIVE OPTIMIZATION PROBLEM IN THE OptD-MULTI METHOD
PublicationNew measurement technologies, e.g. Light Detection And Ranging (LiDAR), generate very large datasets. In many cases, it is reasonable to reduce the number of measuring points, but in such a way that the datasets after reduction satisfy specific optimization criteria. For this purpose the Optimum Dataset (OptD) method proposed in [1] and [2] can be applied. The OptD method with the use of several optimization criteria is called...
-
Review of Recent Advancement on Nature/Bio-inspired Antenna Designs
PublicationThis article presents an extensive examination of antennas rooted in nature and biology, showcasing their remarkable performance across a wide spectrum of frequencies—from microwave to terahertz. The limitations of traditional antenna design have become increasingly evident in the face of burgeoning demands for novel communication technologies. Conventional analytical-equation-based approaches struggle to deliver the combined performance...
-
Low-Cost EM-Simulation-Driven Multi-Objective Optimization of Antennas
PublicationA surrogate-based method for efficient multi-objective antenna optimization is presented. Our technique exploits response surface approximation (RSA) model constructed from sampled low-fidelity antenna model (here, obtained through coarse-discretization EM simulation). The RSA model enables fast determination of the best available trade-offs between conflicting design goals. A low-cost RSA model construction is possible through...
-
Gender approach to multi-objective optimization of detection systems by pre-selection of criteria
PublicationA novel idea of performing evolutionary computations for solving highly-dimensional multi-objective optimization (MOO) problems is proposed. The information about individual genders is applied. This information is drawn out of the fitness of individuals and applied during the parental crossover in the evolutionary multi-objective optimization (EMO) processes. The paper introduces the principles of the genetic-gender approach (GGA)...
-
Gender approach to multi-objective optimization of detection systems by pre-selection of criteria
PublicationA novel idea of performing evolutionary computations for solving highly-dimensional multi-objective optimization (MOO) problems is proposed. The information about individual genders is applied. This information is drawn out of the fitness of individuals and applied during the parental crossover in the evolutionary multi-objective optimization (EMO) processes. The paper introduces the principles of the genetic-gender approach (GGA)...
-
Gender approach to multi-objective optimization of detection systems by pre-selection of criteria
PublicationA novel idea of performing evolutionary computations for solving highly-dimensional multi-objective optimization (MOO) problems is proposed. The information about individual genders is applied. This information is drawn out of the fitness of individuals and applied during the parental crossover in the evolutionary multi-objective optimization (EMO) processes. The paper introduces the principles of the genetic-gender approach (GGA)...
-
Accelerated multi-objective design optimization of antennas by surrogate modeling and domain segmentation
PublicationMulti-objective optimization yields indispensable information about the best possible design trade-offs of an antenna structure, yet it is challenging if full-wave electromagnetic (EM) analysis is utilized for performance evaluation. The latter is a necessity for majority of contemporary antennas as it is the only way of achieving acceptable modeling accuracy. In this paper, a procedure for accelerated multi-objective design of...
-
Cost-efficient multi-objective design optimization of antennas in highly-dimensional parameter spaces
PublicationMulti-objective optimization of antenna structures in highly-dimensional parameter spaces is investigated. For expedited design, variable-fidelity EM simulations and domain patching algorithm are utilized. The results obtained for a monopole antenna with 13 geometry parameters are compared with surrogate-assisted optimization involving response surface approximation modeling.
-
Computationally Efficient Multi-Objective Optimization of and Experimental Validation of Yagi-Uda Antenna
PublicationIn this paper, computationally efficient multi-objective optimization of antenna structures is discussed. As a design case, we consider a multi-parameter planar Yagi-Uda antenna structure, featuring a driven element, three directors, and a feeding structure. Direct optimization of the high-fidelity electromagnetic (EM) antenna model is prohibitive in computational terms. Instead, our design methodology exploits response surface...
-
Solving highly-dimensional multi-objective optimization problems by means of genetic gender
PublicationPaper presents a computational optimization study using a genetic gender approach for solving multi-objective optimization problems of detection observers. In this methodology the information about an individual gender of all the considered solutions is applied for the purpose of making distinction between different groups of objectives. This information is drawn out of the fitness of individuals and applied during a current parental...
-
Solving highly-dimensional multi-objective optimization problems by means of genetic gender
PublicationPaper presents a computational optimization study using a genetic gender approach for solving multi-objective optimization problems of detection observers. In this methodology the information about an individual gender of all the considered solutions is applied for the purpose of making distinction between different groups of objectives. This information is drawn out of the fitness of individuals and applied during a current parental...
-
EM-Driven Multi-Objective Design of Impedance Transformers By Pareto Ranking Bisection Algorithm
PublicationIn the paper, the problem of fast multi-objective optimization of compact impedance matching transformers is addressed by utilizing a novel Pareto ranking bisection algorithm. It approximates the Pareto front by dividing line segments connecting the designs found in the previous iterations, and refining the obtained candidate solutions by means of poll-type search involving Pareto ranking. The final Pareto set is obtained using...
-
Expedited constrained multi-objective aerodynamic shape optimization by means of physics-based surrogates
PublicationIn the paper, computationally efficient constrained multi-objective design optimization of transonic airfoil profiles is considered. Our methodology focuses on fixed-lift design aimed at finding the best possible trade-offs between the two objectives: minimization of the drag coefficient and maximization of the pitching moment. The algorithm presented here exploits the surrogate-based optimization principle, variable-fidelity computational...
-
Expedited Multi-Objective Design Optimization of Miniaturized Microwave Structures Using Physics-Based Surrogates
PublicationIn this paper, a methodology for fast multi-objective design optimization of compact microwave circuits is presented. Our approach exploits an equivalent circuit model of the structure under consideration, corrected through implicit and frequency space mapping, then optimized by a multi-objective evolutionary algorithm. The correction/optimization of the surrogate is iterated by design space confinement and segmentation based on...
-
Approximate Quality Criteria for Difficult Multi-Objective Optimization Problems
PublicationThis paper introduces approximate analytic quality criteria useful in assessing the efficiency of evolutionary multi-objective optimization (EMO) procedures. We present a summary of extensive research into computing. In the performed comparative study we take into account the various approaches of the state-of-the-art, in order to objectively assess the EMO performance in highly dimensional spaces; where some executive criteria,...
-
Multi-objective optimization for assessment of topological modification in UWB antennas
PublicationThis paper addresses an issue of systematic and rigorous assessment of effects of topological modifications on the performance of compact UWB antennas. Application of fast surrogate-assisted multi-objective optimization procedures allows us for obtaining, in a practically acceptable timeframe, a set of designs representing the best possible trade-offs between conflicting objectives (here, antenna size minimization and reduction...
-
Approximate Quality Criteria for Difficult Multi-Objective Optimization Problems
PublicationThis paper introduces approximate analytic quality criteria useful in assessing the efficiency of evolutionary multi-objective optimization (EMO) procedures. We present a summary of extensive research into computing. In the performed comparative study we take into account the various approaches of the state-of-the-art, in order to objectively assess the EMO performance in highly dimensional spaces; where some executive criteria,...
-
On deterministic procedures for low-cost multi-objective design optimization of miniaturized impedance matching transformers
PublicationPurpose This paper aims to investigate deterministic strategies for low-cost multi-objective design optimization of compact microwave structures, specifically, impedance matching transformers. The considered methods involve surrogate modeling techniques and variable-fidelity electromagnetic (EM) simulations. In contrary to majority of conventional approaches, they do not rely on population-based metaheuristics, which permit lowering...
-
Low-cost multi-objective optimization and experimental validation of UWB MIMO antenna
PublicationPurpose–The purpose of this paper is to validate methodologies for expedited multi-objective designoptimization of complex antenna structures both numerically and experimentally.Design/methodology/approach–The task of identifying the best possible trade-offs between theantenna size and its electrical performance is formulated as multi-objective optimization problem.Algorithmic frameworks are described for finding Pareto-optimal...
-
Design Space Reduction for Expedited Multi-Objective Design Optimization of Antennas in Highly-Dimensional Spaces
PublicationA surrogate-based technique for efficient multi-objective antenna optimization is discussed. Our approach exploits response surface approximation (RSA) model constructed from low-fidelity antenna model data (here, obtained through coarse-discretization electromagnetic simulations). The RSA model enables fast determination of the best available trade-offs between conflicting design goals. The cost of RSA model construction for multi-parameter...
-
Pareto Ranking Bisection Algorithm for EM-Driven Multi-Objective Design of Antennas in Highly-Dimensional Parameter Spaces
PublicationA deterministic technique for fast surrogate-assisted multi-objective design optimization of antennas in highly-dimensional parameters spaces has been discussed. In this two-stage approach, the initial approximation of the Pareto set representing the best compromise between conflicting objectives is obtained using a bisection algorithm which finds new Pareto-optimal designs by dividing the line segments interconnecting previously...
-
Multi-objective optimization of microwave couplers using corrected domain patching
PublicationPractical design of microwave components and circuits is a compromise between various, often conflicting objectives. In case of compact structures, the trade-offs are typically concerned with the circuit size and its electrical performance. Comprehensive information about the best possible trade-offs can be obtained by means of multi-objective optimization. In this paper, we propose a computationally efficient technique for identifying...
-
Generalized Pareto ranking bisection for computationally feasible multi-objective antenna optimization
PublicationMulti-objective optimization (MO) allows for obtaining comprehensive information about possible design trade-offs of a given antenna structure. Yet, executing MO using the most popular class of techniques, population-based metaheuristics, may be computationally prohibitive when full-wave EM analysis is utilized for antenna evaluation. In this work, a low-cost and fully deterministic MO methodology is introduced. The proposed generalized...
-
Constrained multi-objective optimization of compact microwave circuits by design triangulation and pareto front interpolation
PublicationDevelopment of microwave components is an inherently multi-objective task. This is especially pertinent to the design closure stage, i.e., final adjustment of geometry and/or material parameters carried out to improve the electrical performance of the system. The design goals are often conflicting so that the improvement of one normally leads to a degradation of others. Compact microwave passives constitute a representative case:...
-
Fast Multi-Objective Aerodynamic Optimization Using Sequential Domain Patching and Multifidelity Models
PublicationExploration of design tradeoffs for aerodynamic surfaces requires solving of multi-objective optimization (MOO) problems. The major bottleneck here is the time-consuming evaluations of the computational fluid dynamics (CFD) model used to capture the nonlinear physics involved in designing aerodynamic surfaces. This, in conjunction with a large number of simulations necessary to yield a set of designs representing the best possible...
-
Fast multi-objective optimization of antenna structures by means of data-driven surrogates and dimensionality reduction
PublicationDesign of contemporary antenna structures needs to account for several and often conflicting objectives. These are pertinent to both electrical and field properties of the antenna but also its geometry (e.g., footprint minimization). For practical reasons, especially to facilitate efficient optimization, single-objective formulations are most often employed, through either a priori preference articulation, objective aggregation,...
-
Low-cost multi-objective optimization of antennas using Pareto front exploration and response features
PublicationIn the paper, a procedure for low-cost multi-objective optimization of antenna structures is presented. Our approach is based on exploration of the Pareto front representing the best possible trade-offs between conflicting objectives, here, the structure size and its electrical performance. Starting from the design representing the best in-band reflection level, subsequent Pareto-optimal designs are identified through local constrained...
-
Preference-based evolutionary multi-objective optimization in ship weather routing
PublicationIn evolutionary multi-objective optimization (EMO) the aim is to find a set of Pareto-optimal solutions. Such approach may be applied to multiple real-life problems, including weather routing (WR) of ships. The route should be optimal in terms of passage time, fuel consumption and safety of crew and cargo while taking into account dynamically changing weather conditions. Additionally it must not violate any navigational constraints...
-
Gender approaches to evolutionary multi-objective optimization using pre-selection of criteria
PublicationA novel idea to perform evolutionary computations (ECs) for solving highly dimensional multi-objective optimization (MOO) problems is proposed. Following the general idea of evolution, it is proposed that information about gender is used to distinguish between various groups of objectives and identify the (aggregate) nature of optimality of individuals (solutions). This identification is drawn out of the fitness of individuals...
-
Expedited Simulation-Driven Multi-Objective Design Optimization of Quasi-Isotropic Dielectric Resonator Antenna
PublicationMajority of practical engineering design problems require simultaneous handling of several criteria. Although many of design tasks can be turned into single-objective problems using sufficient formulations, in some situations, acquiring comprehensive knowledge about possible trade-offs between conflicting objectives may be necessary. This calls for multi-objective optimization that aims at identifying a set of alternative, Pareto-optimal...
-
A Generalized SDP Multi-Objective Optimization Method for EM-Based Microwave Device Design
PublicationIn this article, a generalized sequential domain patching (GSDP) method for efficient multi-objective optimization based on electromagnetics (EM) simulation is proposed. The GSDP method allowing fast searching for Pareto fronts for two and three objectives is elaborated in detail in this paper. The GSDP method is compared with the NSGA-II method using multi-objective problems in the DTLZ series, and the results show the GSDP method...
-
Multi-Objective Design Optimization of Compact Quasi-Isotropic Dielectric Resonator Antenna
PublicationMulti-objective optimization of a quasi-isotropic dielectric resonator antenna (DRA) is presented. Utilization of variable-fidelity electromagnetic (EM) DRA models, response surface approximations, and response correction techniques, allows us to obtain—at a low computational cost—a set of alternative antenna designs representing the best possible trade-offs between three conflicting objectives: antenna size, its reflection response,...
-
Rapid multi-objective design optimization of miniaturized impedance transformer by Pareto front exploration
PublicationFast multi-objective optimization of compact impedance transformer is discussed. A set of alternative designs representing possible trade-offs between conflicting design criteria, i.e., electrical performance (here, wideband matching) and the structure size, is obtained through Pareto front exploration by means of surrogate-assisted methods.
-
Patch size setup and performance/cost trade-offs in multi-objective EM-driven antenna optimization using sequential domain patching
PublicationPurpose This paper aims to assess control parameter setup and its effect on computational cost and performance of deterministic procedures for multi-objective design optimization of expensive simulation models of antenna structures. Design/methodology/approach A deterministic algorithm for cost-efficient multi-objective optimization of antenna structures has been assessed. The algorithm constructs a patch connecting extreme Pareto-optimal...
-
Patch size setup and performance/cost trade-offs in multi-objective antenna optimization using domain patching technique
PublicationA numerical study concerning multi-objective optimization of antenna structures using sequential domain patching (SDP) technique has been presented. We investigate the effect of various setups of the patch size on the operation of the SDP algorithm and possible trade-offs concerning the quality of the Pareto set found by SDP and the computational cost of the optimization process. Our considerations are illustrated using a UWB monopole...
-
Nested Kriging Surrogates for Rapid Multi-Objective Optimization of Compact Microwave Components
PublicationA procedure for rapid EM-based multi-objective optimization of compact microwave components is presented. Our methodology employs a recently developed nested kriging modelling to identify the search space region containing the Pareto-optimal designs, and to construct a fast surrogate model. The latter permits determination of the initial Pareto set, further refined using a separate surrogate-assisted process. As an illustration,...
-
Fast Multi-Objective Antenna Optimization Using Sequential Patching and Variable-Fidelity EM Models
PublicationIn this work, a technique for fast multi-objective design optimization of antenna structures is presented. In our approach, the initial approximation of the Pareto set representing the best possible trade-offs between conflicting design objectives is obtained by means of sequential patching of the design space. The latter is a stencil-based search that aims at creating a path that connects the extreme Pareto-optimal designs (obtained...