displaying 1000 best results Help
Search results for: optical skin phantoms
-
Isolation of Human Progenitor Epidermal Cells on Collagen Type IV and Analysis of Their Markers with Flow Cytometry and PCR Methods
PublicationEpidermal stem cells, located in the skin, together with keratinocytes are transplanted in regenerative therapies, e.g., for the treatment of burns or other wounds. Here, we describe the protocol of their enzymatic isolation from human skin. It includes separation of the epidermis form the dermis by incubation with dispase followed by cell isolation for epidermis by digestion with trypsin. Cell isolated with this method can be...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 60 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 40 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 85 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 55 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 75 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 65 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 90 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 80 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 45 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 35 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 50 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 70 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapasitor with the use of ZnO coated microsphere-based fiber-optic sensor - 30 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Cross-sectioning of wetland macrophytes after wastewater exposure
Open Research DataThis data set contains the light microscope images of cross root sections of wetland macrophytes exposured on wastewater. Phragmites australis, Iris pseudacorus, Typha latifolia, Juncus inflexus, Nympha, and Limnobium were selected for observations. Delta Optical Generic Pro microscope with camera 3MP (Delta Optical, Poland) integrated with DLTCamViewer...
-
O07 Filaggrin insufficiency renders keratinocyte-derived small extracellular vesicles capable of affecting CD1a-mediated T-cell responses and promoting allergic inflammation
PublicationThe association between FLG loss-of-function mutations and the development of atopic dermatitis (AD) indicates that filaggrin is critical to skin barrier function; the mutations are also linked to additional allergic manifestations, but it is unknown how the skin may influence inflammation in distant tissues. Here we investigated the impact of filaggrin insufficiency on keratinocyte-derived exosome-enriched small extracellular...
-
Opto-Electrochemical Sensing Device Based on Long-Period Grating Coated with Boron-Doped Diamond Thin Film
PublicationThe fabrication process of thin boron-doped nanocrystalline diamond (B-NCD) microelectrodes on fused silica single mode optical fiber cladding has been investigated. The B-NCD films were deposited on the fibers using Microwave Plasma Assisted Chemical Vapor Deposition (MW PA CVD) at glass substrate temperature of 475 ºC. We have obtained homogenous, continuous and polycrystalline surface morphology with high sp3 content in B-NCD...
-
Roman Kotlowski dr hab. inż.
People -
Corrugated Sheeting as a Member of a Shear Panel Under Repeated Load—Experimental Test
PublicationIn stressed-skin design, the cladding stiffening effect on structures is taken into account. However, the “traditional” design is more usual, wherein this effect is neglected. Even if the diaphragm actions are not regarded, in particular cases such as big sheds (and others), the parasitic (unwanted) stressed-skin action may occur with the result of leakage or even failure. The structures of this kind have already been built. Thus,...
-
Cattaneo–Christov heat flow model for copper–water nanofluid heat transfer under Marangoni convection and slip conditions
PublicationThis report is devoted to the study of the flow of MHD nanofluids through a vertical porous plate with a temperature-dependent surface tension using the Cattaneo–Christov heat flow model. The energy equation was formulated using the Cattaneo–Christov heat flux model instead of Fourier’s law of heat conduction. The Tiwari–Das model was used to take into account the concentration of nanoparticles when constructing the momentum equation....
-
Proteomic and Metabolomic Changes in Psoriasis Preclinical and Clinical Aspects
PublicationSkin diseases such as psoriasis (Ps) and psoriatic arthritis (PsA) are immune-mediated inflammatory diseases. Overlap of autoinflammatory and autoimmune conditions hinders diagnoses and identifying personalized patient treatments due to different psoriasis subtypes and the lack of verified biomarkers. Recently, proteomics and metabolomics have been intensively investigated in a broad range of skin diseases with the main purpose...
-
Distance measurement with the low coherent interferometer with silver mirror (the source wavelegth 1310 nm) - 0 um (serie 2)
Open Research DataThe obtained data was acquired by the interferometric fiber-optic sensor of distance. The setup was constructed of a broadband light source working at the central wavelength of 1310 nm, an optical spectrum analyzer, and a fiber-optic 2x1 coupler (with the power split 50:50). All elements were connected by standard single-mode optical fibers. The measurement...
-
Distance measurement with the low coherent interferometer with silver mirror (the source wavelegth 1310 nm) - 40 um (serie 2)
Open Research DataThe obtained data was acquired by the interferometric fiber-optic sensor of distance. The setup was constructed of a broadband light source working at the central wavelength of 1310 nm, an optical spectrum analyzer, and a fiber-optic 2x1 coupler (with the power split 50:50). All elements were connected by standard single-mode optical fibers. The measurement...
-
Distance measurement with the low coherent interferometer with silver mirror (the source wavelegth 1310 nm) - 30 um (serie 2)
Open Research DataThe obtained data was acquired by the interferometric fiber-optic sensor of distance. The setup was constructed of a broadband light source working at the central wavelength of 1310 nm, an optical spectrum analyzer, and a fiber-optic 2x1 coupler (with the power split 50:50). All elements were connected by standard single-mode optical fibers. The measurement...
-
Distance measurement with the low coherent interferometer with silver mirror (the source wavelegth 1310 nm) - 200 um (serie 2)
Open Research DataThe obtained data was acquired by the interferometric fiber-optic sensor of distance. The setup was constructed of a broadband light source working at the central wavelength of 1310 nm, an optical spectrum analyzer, and a fiber-optic 2x1 coupler (with the power split 50:50). All elements were connected by standard single-mode optical fibers. The measurement...
-
Distance measurement with the low coherent interferometer with silver mirror (the source wavelegth 1310 nm) - 20 um (serie 1)
Open Research DataThe obtained data was acquired by the interferometric fiber-optic sensor of distance. The setup was constructed of a broadband light source working at the central wavelength of 1310 nm, an optical spectrum analyzer, and a fiber-optic 2x1 coupler (with the power split 50:50). All elements were connected by standard single-mode optical fibers. The measurement...
-
Distance measurement with the low coherent interferometer with silver mirror (the source wavelegth 1310 nm) - 80 um (serie 1)
Open Research DataThe obtained data was acquired by the interferometric fiber-optic sensor of distance. The setup was constructed of a broadband light source working at the central wavelength of 1310 nm, an optical spectrum analyzer, and a fiber-optic 2x1 coupler (with the power split 50:50). All elements were connected by standard single-mode optical fibers. The measurement...
-
Distance measurement with the low coherent interferometer with silver mirror (the source wavelegth 1310 nm) - 170 um (serie 1)
Open Research DataThe obtained data was acquired by the interferometric fiber-optic sensor of distance. The setup was constructed of a broadband light source working at the central wavelength of 1310 nm, an optical spectrum analyzer, and a fiber-optic 2x1 coupler (with the power split 50:50). All elements were connected by standard single-mode optical fibers. The measurement...
-
Distance measurement with the low coherent interferometer with silver mirror (the source wavelegth 1310 nm) - 20 um (serie 2)
Open Research DataThe obtained data was acquired by the interferometric fiber-optic sensor of distance. The setup was constructed of a broadband light source working at the central wavelength of 1310 nm, an optical spectrum analyzer, and a fiber-optic 2x1 coupler (with the power split 50:50). All elements were connected by standard single-mode optical fibers. The measurement...
-
Distance measurement with the low coherent interferometer with silver mirror (the source wavelegth 1310 nm) - 140 um (serie 1)
Open Research DataThe obtained data was acquired by the interferometric fiber-optic sensor of distance. The setup was constructed of a broadband light source working at the central wavelength of 1310 nm, an optical spectrum analyzer, and a fiber-optic 2x1 coupler (with the power split 50:50). All elements were connected by standard single-mode optical fibers. The measurement...
-
Distance measurement with the low coherent interferometer with silver mirror (the source wavelegth 1310 nm) - 130 um (serie 2)
Open Research DataThe obtained data was acquired by the interferometric fiber-optic sensor of distance. The setup was constructed of a broadband light source working at the central wavelength of 1310 nm, an optical spectrum analyzer, and a fiber-optic 2x1 coupler (with the power split 50:50). All elements were connected by standard single-mode optical fibers. The measurement...
-
Distance measurement with the low coherent interferometer with silver mirror (the source wavelegth 1310 nm) - 50 um (serie 1)
Open Research DataThe obtained data was acquired by the interferometric fiber-optic sensor of distance. The setup was constructed of a broadband light source working at the central wavelength of 1310 nm, an optical spectrum analyzer, and a fiber-optic 2x1 coupler (with the power split 50:50). All elements were connected by standard single-mode optical fibers. The measurement...
-
Distance measurement with the low coherent interferometer with silver mirror (the source wavelegth 1310 nm) - 120 um (serie 2)
Open Research DataThe obtained data was acquired by the interferometric fiber-optic sensor of distance. The setup was constructed of a broadband light source working at the central wavelength of 1310 nm, an optical spectrum analyzer, and a fiber-optic 2x1 coupler (with the power split 50:50). All elements were connected by standard single-mode optical fibers. The measurement...
-
Distance measurement with the low coherent interferometer with silver mirror (the source wavelegth 1310 nm) - 110 um (serie 2)
Open Research DataThe obtained data was acquired by the interferometric fiber-optic sensor of distance. The setup was constructed of a broadband light source working at the central wavelength of 1310 nm, an optical spectrum analyzer, and a fiber-optic 2x1 coupler (with the power split 50:50). All elements were connected by standard single-mode optical fibers. The measurement...
-
Distance measurement with the low coherent interferometer with silver mirror (the source wavelegth 1310 nm) - 130 um (serie 1)
Open Research DataThe obtained data was acquired by the interferometric fiber-optic sensor of distance. The setup was constructed of a broadband light source working at the central wavelength of 1310 nm, an optical spectrum analyzer, and a fiber-optic 2x1 coupler (with the power split 50:50). All elements were connected by standard single-mode optical fibers. The measurement...
-
Distance measurement with the low coherent interferometer with silver mirror (the source wavelegth 1310 nm) - 90 um (serie 2)
Open Research DataThe obtained data was acquired by the interferometric fiber-optic sensor of distance. The setup was constructed of a broadband light source working at the central wavelength of 1310 nm, an optical spectrum analyzer, and a fiber-optic 2x1 coupler (with the power split 50:50). All elements were connected by standard single-mode optical fibers. The measurement...
-
Distance measurement with the low coherent interferometer with silver mirror (the source wavelegth 1310 nm) - 120 um (serie 1)
Open Research DataThe obtained data was acquired by the interferometric fiber-optic sensor of distance. The setup was constructed of a broadband light source working at the central wavelength of 1310 nm, an optical spectrum analyzer, and a fiber-optic 2x1 coupler (with the power split 50:50). All elements were connected by standard single-mode optical fibers. The measurement...
-
Distance measurement with the low coherent interferometer with silver mirror (the source wavelegth 1310 nm) - 200 um (serie 1)
Open Research DataThe obtained data was acquired by the interferometric fiber-optic sensor of distance. The setup was constructed of a broadband light source working at the central wavelength of 1310 nm, an optical spectrum analyzer, and a fiber-optic 2x1 coupler (with the power split 50:50). All elements were connected by standard single-mode optical fibers. The measurement...
-
Distance measurement with the low coherent interferometer with silver mirror (the source wavelegth 1310 nm) - 170 um (serie 2)
Open Research DataThe obtained data was acquired by the interferometric fiber-optic sensor of distance. The setup was constructed of a broadband light source working at the central wavelength of 1310 nm, an optical spectrum analyzer, and a fiber-optic 2x1 coupler (with the power split 50:50). All elements were connected by standard single-mode optical fibers. The measurement...
-
Distance measurement with the low coherent interferometer with silver mirror (the source wavelegth 1310 nm) - 90 um (serie 1)
Open Research DataThe obtained data was acquired by the interferometric fiber-optic sensor of distance. The setup was constructed of a broadband light source working at the central wavelength of 1310 nm, an optical spectrum analyzer, and a fiber-optic 2x1 coupler (with the power split 50:50). All elements were connected by standard single-mode optical fibers. The measurement...
-
Distance measurement with the low coherent interferometer with silver mirror (the source wavelegth 1310 nm) - 180 um (serie 1)
Open Research DataThe obtained data was acquired by the interferometric fiber-optic sensor of distance. The setup was constructed of a broadband light source working at the central wavelength of 1310 nm, an optical spectrum analyzer, and a fiber-optic 2x1 coupler (with the power split 50:50). All elements were connected by standard single-mode optical fibers. The measurement...
-
Distance measurement with the low coherent interferometer with silver mirror (the source wavelegth 1310 nm) - 140 um (serie 2)
Open Research DataThe obtained data was acquired by the interferometric fiber-optic sensor of distance. The setup was constructed of a broadband light source working at the central wavelength of 1310 nm, an optical spectrum analyzer, and a fiber-optic 2x1 coupler (with the power split 50:50). All elements were connected by standard single-mode optical fibers. The measurement...
-
Distance measurement with the low coherent interferometer with silver mirror (the source wavelegth 1310 nm) - 60 um (serie 2)
Open Research DataThe obtained data was acquired by the interferometric fiber-optic sensor of distance. The setup was constructed of a broadband light source working at the central wavelength of 1310 nm, an optical spectrum analyzer, and a fiber-optic 2x1 coupler (with the power split 50:50). All elements were connected by standard single-mode optical fibers. The measurement...
-
Distance measurement with the low coherent interferometer with silver mirror (the source wavelegth 1310 nm) - 190 um (serie 2)
Open Research DataThe obtained data was acquired by the interferometric fiber-optic sensor of distance. The setup was constructed of a broadband light source working at the central wavelength of 1310 nm, an optical spectrum analyzer, and a fiber-optic 2x1 coupler (with the power split 50:50). All elements were connected by standard single-mode optical fibers. The measurement...
-
Distance measurement with the low coherent interferometer with silver mirror (the source wavelegth 1310 nm) - 40 um (serie 1)
Open Research DataThe obtained data was acquired by the interferometric fiber-optic sensor of distance. The setup was constructed of a broadband light source working at the central wavelength of 1310 nm, an optical spectrum analyzer, and a fiber-optic 2x1 coupler (with the power split 50:50). All elements were connected by standard single-mode optical fibers. The measurement...
-
Distance measurement with the low coherent interferometer with silver mirror (the source wavelegth 1310 nm) - 70 um (serie 2)
Open Research DataThe obtained data was acquired by the interferometric fiber-optic sensor of distance. The setup was constructed of a broadband light source working at the central wavelength of 1310 nm, an optical spectrum analyzer, and a fiber-optic 2x1 coupler (with the power split 50:50). All elements were connected by standard single-mode optical fibers. The measurement...
-
Distance measurement with the low coherent interferometer with silver mirror (the source wavelegth 1310 nm) - 180 um (serie 2)
Open Research DataThe obtained data was acquired by the interferometric fiber-optic sensor of distance. The setup was constructed of a broadband light source working at the central wavelength of 1310 nm, an optical spectrum analyzer, and a fiber-optic 2x1 coupler (with the power split 50:50). All elements were connected by standard single-mode optical fibers. The measurement...
-
Distance measurement with the low coherent interferometer with silver mirror (the source wavelegth 1310 nm) - 60 um (serie 1)
Open Research DataThe obtained data was acquired by the interferometric fiber-optic sensor of distance. The setup was constructed of a broadband light source working at the central wavelength of 1310 nm, an optical spectrum analyzer, and a fiber-optic 2x1 coupler (with the power split 50:50). All elements were connected by standard single-mode optical fibers. The measurement...
-
Distance measurement with the low coherent interferometer with silver mirror (the source wavelegth 1310 nm) - 0 um.
Open Research DataThe obtained data was acquired by the interferometric fiber-optic sensor of distance. The setup was constructed of a broadband light source working at the central wavelength of 1310 nm, an optical spectrum analyzer, and a fiber-optic 2x1 coupler (with the power split 50:50). All elements were connected by standard single-mode optical fibers. The measurement...
-
Distance measurement with the low coherent interferometer with silver mirror (the source wavelegth 1310 nm) - 110 um (serie 1)
Open Research DataThe obtained data was acquired by the interferometric fiber-optic sensor of distance. The setup was constructed of a broadband light source working at the central wavelength of 1310 nm, an optical spectrum analyzer, and a fiber-optic 2x1 coupler (with the power split 50:50). All elements were connected by standard single-mode optical fibers. The measurement...