Search results for: RIGHT-HANDED RIEMANN–LIOUVILLE FRACTIONAL DERIVATIVES
-
Fractional Problems with Right-Handed Riemann-Liouville Fractional Derivatives
PublicationIn this paper, we investigate the existence of solutions for advanced fractional differential equations containing the right-handed Riemann-Liouville fractional derivative both with nonlinear boundary conditions and also with initial conditions given at the end point T of interval [0,T ]. We use both the method of successive approximations, the Banach fixed point theorem and the monotone iterative technique, as well. Linear problems...
-
Comments on various extensions of the Riemann–Liouville fractional derivatives : About the Leibniz and chain rule properties
PublicationStarting from the Riemann–Liouville derivative, many authors have built their own notion of fractional derivative in order to avoid some classical difficulties like a non zero derivative for a constant function or a rather complicated analogue of the Leibniz relation. Discussing in full generality the existence of such operator over continuous functions, we derive some obstruction Lemma which can be used to prove the triviality...
-
Systems of Nonlinear Fractional Differential Equations
PublicationUsing the iterative method, this paper investigates the existence of a unique solution to systems of nonlinear fractional differential equations, which involve the right-handed Riemann-Liouville fractional derivatives D(T)(q)x and D(T)(q)y. Systems of linear fractional differential equations are also discussed. Two examples are added to illustrate the results.
-
On Applications of Fractional Derivatives in Electromagnetic Theory
PublicationIn this paper, concepts of fractional-order (FO) derivatives are analysed from the point of view of applications in the electromagnetic theory. The mathematical problems related to the FO generalization of Maxwell's equations are investigated. The most popular formulations of the fractional derivatives, i.e., Riemann-Liouville, Caputo, Grünwald-Letnikov and Marchaud definitions, are considered. Properties of these derivatives are...
-
On Applications of Fractional Derivatives in Circuit Theory
PublicationIn this paper, concepts of fractional-order (FO) derivatives are discussed from the point of view of applications in the circuit theory. The properties of FO derivatives required for the circuit-level modelling are formulated. Potential problems related to the generalization of transmission line equations with the use of FO derivatives are presented. It is demonstrated that some of formulations of the FO derivatives have limited...
-
On Applications of Elements Modelled by Fractional Derivatives in Circuit Theory
PublicationIn this paper, concepts of fractional-order (FO) derivatives are reviewed and discussed with regard to element models applied in the circuit theory. The properties of FO derivatives required for the circuit-level modeling are formulated. Potential problems related to the generalization of transmission-line equations with the use of FO derivatives are presented. It is demonstrated that some formulations of FO derivatives have limited...
-
A Note on Fractional Curl Operator
PublicationIn this letter, we demonstrate that the fractional curl operator, widely used in electromagnetics since 1998, is essentially a rotation operation of components of the complex Riemann–Silberstein vector representing the electromagnetic field. It occurs that after the wave decomposition into circular polarisations, the standard duality rotation with the angle depending on the fractional order is applied to the left-handed basis vector...
-
Fractional equations of Volterra type involving a Riemann Liouville derivative
PublicationIn this paper, we discuss the existence of solutions of fractional equations of Volterra type with the Riemann Liouville derivative. Existence results are obtained by using a Banach fixed point theorem with weighted norms and by a monotone iterative method too. An example illustrates the results.
-
Formulation of Time-Fractional Electrodynamics Based on Riemann-Silberstein Vector
PublicationIn this paper, the formulation of time-fractional (TF) electrodynamics is derived based on the Riemann-Silberstein (RS) vector. With the use of this vector and fractional-order derivatives, one can write TF Maxwell’s equations in a compact form, which allows for modelling of energy dissipation and dynamics of electromagnetic systems with memory. Therefore, we formulate TF Maxwell’s equations using the RS vector and analyse their...
-
Initial value problems for neutral fractional differential equations involving a Riemann-Liouville derivative
PublicationBadano równania neutralne typu ułamkowego z odchylonym argumentem. Podano warunki dostateczne na istnienie jednego rozwiązania.
-
Initial geometries and MD trajectories of right- and left-handed G-quadruplexes
Open Research DataDataset contains initial geometries of 12 monomeric, 2-tetrad G-quadruplexes featuring three different loop lengths (T1, T2 and T3), adapted by the sequence GGTnGGTnGGTnGG where n=(1-3). For each loop length variant two directions of strand progression (clockwise (+) and anti-clockwise (-)) and two helicities (left-handed (LH) and right-handed (RH))...
-
Fractional Derivatives Application to Image Fusion Problems
Publication -
Positive solutions to fractional differential equations involving Stieltjes integral conditions
PublicationIn this paper, we investigate nonlocal boundary value problems for fractional differential equations with dependence on the first-order derivatives and deviating arguments. Sufficient conditions which guarantee the existence of at least three positive solutions are new and obtained by using the Avery–Peterson theorem. We discuss problems (1) and (2) when argument b can change the character on [0, 1], so in some subinterval I of...
-
A Fortran-95 algorithm to solve the three-dimensional Higgs boson equation in the de Sitter space-time
Open Research DataA numerically efficient finite-difference technique for the solution of a fractional extension of the Higgs boson equation in the de Sitter space-time is designed. The model under investigation is a multidimensional equation with Riesz fractional derivatives of orders in (0,1)U(1,2], which considers a generalized potential and a time-dependent diffusion...
-
Why Are Left-Handed G-Quadruplexes Scarce?
PublicationG-quadruplexes (G4s) are nucleic acid structures crucial for the regulation of gene expression and genome maintenance. While they hold promise as nanodevice components, achieving desired G4 folds requires understanding the interplay between stability and structural properties, like helicity. Although right-handed G4 structures dominate the experimental data, the molecular basis for this preference over left-handed helicity is unclear....
-
Discrete and continuous fractional persistence problems – the positivity property and applications
PublicationIn this article, we study the continuous and discrete fractional persistence problem which looks for the persistence of properties of a given classical (α=1) differential equation in the fractional case (here using fractional Caputo’s derivatives) and the numerical scheme which are associated (here with discrete Grünwald–Letnikov derivatives). Our main concerns are positivity, order preserving ,equilibrium points and stability...
-
Fractional Spectral and Fractional Finite Element Methods: A Comprehensive Review and Future Prospects
PublicationIn this article, we will discuss the applications of the Spectral element method (SEM) and Finite element Method (FEM) for fractional calculusThe so-called fractional Spectral element method (f-SEM) and fractional Finite element method (f-FEM) are crucial in various branches of science and play a significant role. In this review, we discuss the advantages and adaptability of FEM and SEM, which provide the simulations of fractional...
-
Numerical Method for Stability Testing of Fractional Exponential Delay Systems
PublicationA numerical method for stability testing of fractional exponential systems including delays is presented in this contribution. We propose the numerical test of stability for a very general class of systems with a transfer function, which includes polynomials and exponentials of fractional powers of the Laplace variable s combined with delay terms. Such a system is unstable if any root of its characteristic equation, which usually...
-
Kagome Lattice Promotes Chiral Spin Fluctuations
PublicationDynamical spin fluctuations in magnets can be endowed with a slight bent toward left- or right-handed chirality by Dzyaloshinskii-Moriya interactions. However, little is known about the crucial role of lattice geometry on these chiral spin fluctuations and on fluctuation-related transport anomalies driven by the quantum-mechanical (Berry) phase of conduction electrons. Via thermoelectric Nernst effect and electric Hall effect experiments,...
-
Sensitive Demonstration of the Twin-Core Couplers including Kerr Law Non-Linearity via Beta Derivative Evolution
PublicationTo obtain new solitary wave solutions for non-linear directional couplers using optical meta-materials, a new extended direct algebraic technique (EDAT) is used. This model investigates solitary wave propagation inside a fiber. As a result, twin couplers are the subject of this study. Kerr law is the sort of non-linearity addressed there. Because it offers solutions to problems with large tails or infinite fluctuations, the resulting...
-
Crank–Nicolson FDTD Method in Media Described by Time-Fractional Constitutive Relations
PublicationIn this contribution, we present the Crank-Nicolson finite-difference time-domain (CN-FDTD) method, implemented for simulations of wave propagation in media described by time-fractional (TF) constitutive relations. That is, the considered constitutive relations involve fractional-order (FO) derivatives based on the Grünwald-Letnikov definition, allowing for description of hereditary properties and memory effects of media and processes....
-
A NUMERICAL STUDY ON THE DYNAMICS OF DENGUE DISEASE MODEL WITH FRACTIONAL PIECEWISE DERIVATIVE
PublicationThe aim of this paper is to study the dynamics of Dengue disease model using a novel piecewise derivative approach in the sense of singular and non-singular kernels. The singular kernel operator is in the sense of Caputo, whereas the non-singular kernel operator is the Atangana–Baleanu Caputo operator. The existence and uniqueness of a solution with piecewise derivative are examined for the aforementioned problem. The suggested...
-
Identification and non-integer order modelling of synchronous machines operating as generator
PublicationThis paper presents an original mathematical model of a synchronous generator using derivatives of fractional order. In contrast to classical models composed of a large number of R-L ladders, it comprises half-order impedances, which enable the accurate description of the electromagnetic induction phenomena in a wide frequency range, while minimizing the order and number of model parameters. The proposed model takes into account...
-
Fundamental properties of solutions to fractional-order Maxwell's equations
PublicationIn this paper, fundamental properties of solutions to fractional-order (FO) Maxwell's equations are analysed. As a starting point, FO Maxwell's equations are introduced in both time and frequency domains. Then, we introduce and prove the fundamental properties of electromagnetic field in FO electromagnetics, i.e. energy conservation, uniqueness of solutions, and reciprocity. Furthermore, the algorithm of the plane wave simulation...
-
Numerical Test for Stability Evaluation of Analog Circuits
PublicationIn this contribution, a new numerical test for the stability evaluation of analog circuits is presented. Usually, if an analog circuit is unstable then the roots of its characteristic equation are localized on the right half-plane of the Laplace s- plane. Because this region is unbounded, we employ the bilinear transformation to map it into the unit disc on the complex plane. Hence, the existence of any root inside the unit disc...
-
Modification of gradient HPLC method for determination of small molecules' affinity to human serum albumin under column safety conditions: Robustness and chemometrics study
PublicationIn the early stages of drug discovery, beyond the biological activity screening, determining the physicochemical properties that affect the distribution of molecules in the human body is an essential step. Plasma protein binding (PPB) is one of the most important investigated endpoints. Nevertheless, the methodology for measuring %PPB is significantly less popular and standardized than other physicochemical properties, like lipophilicity....
-
Wild oscillations in a nonlinear neuron model with resets: (II) Mixed-mode oscillations
PublicationThis work continues the analysis of complex dynamics in a class of bidimensional nonlinear hybrid dynamical systems with resets modeling neuronal voltage dynamics with adaptation and spike emission. We show that these models can generically display a form of mixed-mode oscillations (MMOs), which are trajectories featuring an alternation of small oscillations with spikes or bursts (multiple consecutive spikes). The mechanism by...
-
Testing Stability of Digital Filters Using Optimization Methods with Phase Analysis
PublicationIn this paper, novel methods for the evaluation of digital-filter stability are investigated. The methods are based on phase analysis of a complex function in the characteristic equation of a digital filter. It allows for evaluating stability when a characteristic equation is not based on a polynomial. The operation of these methods relies on sampling the unit circle on the complex plane and extracting the phase quadrant of a function...
-
Marek Czachor prof. dr hab.
People -
Jaroslaw Spychala dr
PeopleOprócz bardzo dobrego wykształcenia osoba posiada również wieloletnie doświadczenie zawodowe, które jest poświadczeniem tego, że potrafi wykorzystać swoją wiedzę teoretyczną w praktycznych działaniach. Doświadczenie zawodowe jest bardzo bogate i rozbudowane. Ze względu na nabyte całkiem nowe umiejętności zwiększa się atrakcyjność doświadczonego pracownika. Są to między innymi kreatywne myślenie, zorientowanie na cel, odporność...