Search results for: Translocation factor
-
Metal tolerance and Cd phytoremoval ability in Pisum sativum grown in spiked nutrient solution
PublicationIn the presented study, the effects of cadmium (Cd) stress and silicon (Si) supplementation on the pea plant (Pisum sativum L.) were investigated. The tendency to accumulate cadmium in the relevant morphological parts of the plant (roots and shoots respectively)—bioaccumulation, the transfer of this element in the plant (translocation) and the physiological parameters of the plant through...
-
A subset of two adherence systems, acute pro-inflammatory pap genes and invasion coding dra, fim, or sfa, increases the risk of Escherichia coli translocation to the bloodstream
PublicationAn analysis of the phylogenetic distribution and virulence genes of Escherichia coli isolates which predispose this bacteria to translocate from the urinary tract to the bloodstream is presented. One-dimensional analysis indicated that the occurrence of P fimbriae and α-hemolysin coding genes is more frequent among the E. coli which cause bacteremia. However, a two-dimensional analysis revealed that a combination of genes coding...
-
Uptake, accumulation, and translocation of Zn, Cu, Pb, Cd, Ni, and Cr by P. australis seedlings in an urban dredged sediment mesocosm: impact of seedling origin and initial trace metal content
PublicationThe study presents results from 6 months of phytoremediation of sediments dredged from three urban retention tanks carried out in a mesocosm setup with the use of P. australis. Two kinds of P. australis seedlings were considered: seedlings originating from natural (uncontaminated - Suncont) and anthropogenically changed environments (contaminated – Scont); this distinction was reflected in the baseline concentrations of trace metals...
-
Checkpoints that regulate balanced biosynthesis of lipopolysaccharide and its essentiality in Escherichia coli
PublicationThe outer membrane (OM) of Gram-negative bacteria, such as Escherichia coli, is essential for their viability. Lipopolysaccharide (LPS) constitutes the major component of OM, providing the permeability barrier, and a tight balance exists between LPS and phospholipids amounts as both of these essential components use a common metabolic precursor. Hence, checkpoints are in place, right from the regulation of the first committed step...
-
Regulated Assembly of LPS, Its Structural Alterations and Cellular Response to LPS Defects
PublicationDistinguishing feature of the outer membrane (OM) of Gram-negative bacteria is its asymmetry due to the presence of lipopolysaccharide (LPS) in the outer leaflet of the OM and phospholipids in the inner leaflet. Recent studies have revealed the existence of regulatory controls that ensure a balanced biosynthesis of LPS and phospholipids, both of which are essential for bacterial viability. LPS provides the essential permeability...
-
Cadmium accumulation by Phragmites australis and Iris pseudacorus from stormwater in floating treatment wetlands microcosms: Insights into plant tolerance and utility for phytoremediation
PublicationEnvironmentally sustainable remediation is needed to protect freshwater resources which are deteriorating due to severe industrial, mining, and agricultural activities. Treatment by floating wetlands could be a sustainable solution to remediate water bodies. The study aimed to examine the effects of Cd on Phragmites australis and Iris pseudacorus growth (height, biomass, root length and chlorophyll contents), anatomy, Cd accumulation...
-
Multiple transcriptional factors regulate transcription of the rpoE gene in Escherichia coli under different growth conditions and when the lipopolysaccharide biosynthesis is defective.
PublicationThe RpoE sigma factor is essential for the viability of Escherichia coli. RpoE regulates extracytoplasmic functions including lipopolysaccharide (LPS) translocation and some of its non-stoichiometric modifications. Transcription of the rpoE gene is positively autoregulated by EσE and by unknown mechanisms that control the expression of its distally located promoter(s). Mapping of 5′ ends of rpoE mRNA identified five new transcriptional...
-
A new factor LapD is required for the regulation of LpxC amounts and lipopolysaccharide trafficking
PublicationLipopolysaccharide (LPS) constitutes the major component of the outer membrane and is essential for bacteria, such as Escherichia coli. Recent work has revealed the essential roles of LapB and LapC proteins in regulating LPS amounts; although, if any additional partners are involved is unknown. Examination of proteins co-purifying with LapB identified LapD as a new partner. The purification of LapD reveals that it forms a complex...