Filters
total: 1835
filtered: 276
-
Catalog
- Publications 1126 available results
- Journals 37 available results
- Publishing Houses 3 available results
- People 47 available results
- Inventions 5 available results
- Projects 15 available results
- Research Teams 4 available results
- Research Equipment 4 available results
- e-Learning Courses 83 available results
- Events 11 available results
- Open Research Data 500 available results
Chosen catalog filters
Search results for: KELLER BOX
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 90 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 80 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 80 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 100 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 90 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 80 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 100 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 90 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 80 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 90 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 80 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Hydrodynamic reanalysis of water temperature and salinity in the Baltic Sea using the PM3D model
Open Research DataThe dataset contains the results of numerical modeling of water temperature and salinity in the Baltic Sea since 1998. A long-term reanalysis was performed using the three-dimensional hydrodynamic model PM3D (Kowalewski and Kowalewska-Kalkowska, 2017), a new version of the M3D model (Kowalewski, 1997). A numerical dynamic-thermodynamic model of sea...
-
FTIR spectra of V2O5 nanostructures
Open Research DataThe DataSet contains FTIR spectra of vanadium pentaoxide nanostructures obtained by the sol-gel with different annealing temperatures under synthetic air.
-
Linear impedance of V2O5 nanorods obtained at 923K
Open Research DataThe DataSet contains the linear electrical properties of V2O5 nanorods which were measured by the impedance spectroscopy method. V2O5 nanorods were obtained by the sol-gel method. The information about xerogel powder synthesis is described in the Journal of Nanomaterials. The precursor powder was pressed into the disk-shaped pellets (12mm in diameter...
-
Conley-Morse graphs for a population model with harvesting. Case Ha-S1: Harvesting adults only, survival rates of juveniles and adults add up to 1
Open Research DataThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper "Global dynamics in a stage-structured discrete population model with harvesting" by E. Liz and P. Pilarczyk: Journal of Theoretical Biology, Vol. 297 (2012), pp. 148–165, doi: 10.1016/j.jtbi.2011.12.012.
-
Conley-Morse graphs for a population model with harvesting. Case He-S1: Equal harvesting of juveniles and adults, survival rates of juveniles and adults add up to 1
Open Research DataThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper "Global dynamics in a stage-structured discrete population model with harvesting" by E. Liz and P. Pilarczyk: Journal of Theoretical Biology, Vol. 297 (2012), pp. 148–165, doi: 10.1016/j.jtbi.2011.12.012.
-
Conley-Morse graphs for a population model with harvesting. Case Hj-Se: Harvesting juveniles only, equal survival rates of juveniles and adults
Open Research DataThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper "Global dynamics in a stage-structured discrete population model with harvesting" by E. Liz and P. Pilarczyk: Journal of Theoretical Biology, Vol. 297 (2012), pp. 148–165, doi: 10.1016/j.jtbi.2011.12.012.
-
Conley-Morse graphs for a population model with harvesting. Case He-Se: Equal harvesting and equal survival rates of juveniles and adults
Open Research DataThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper "Global dynamics in a stage-structured discrete population model with harvesting" by E. Liz and P. Pilarczyk: Journal of Theoretical Biology, Vol. 297 (2012), pp. 148–165, doi: 10.1016/j.jtbi.2011.12.012.
-
Conley-Morse graphs for a population model with harvesting. Case Hj-S1: Harvesting juveniles only, survival rates of juveniles and adults add up to 1
Open Research DataThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper "Global dynamics in a stage-structured discrete population model with harvesting" by E. Liz and P. Pilarczyk: Journal of Theoretical Biology, Vol. 297 (2012), pp. 148–165, doi: 10.1016/j.jtbi.2011.12.012.
-
Conley-Morse graphs for a population model with harvesting. Case Ha-Se: Harvesting adults only, equal survival rates of juveniles and adults
Open Research DataThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper "Global dynamics in a stage-structured discrete population model with harvesting" by E. Liz and P. Pilarczyk: Journal of Theoretical Biology, Vol. 297 (2012), pp. 148–165, doi: 10.1016/j.jtbi.2011.12.012.
-
Morse decompositions for a non-linear Leslie population model with 2 varying parameters
Open Research DataThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper "A database schema for the analysis of global dynamics of multiparameter systems" by Z. Arai, W. Kalies, H. Kokubu, K. Mischaikow, H. Oka, P. Pilarczyk, published in SIAM Journal on Applied Dynamical Systems (SIADS),...
-
Morse decompositions for a non-linear Leslie population model with 3 varying parameters
Open Research DataThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper "A database schema for the analysis of global dynamics of multiparameter systems" by Z. Arai, W. Kalies, H. Kokubu, K. Mischaikow, H. Oka, P. Pilarczyk, published in SIAM Journal on Applied Dynamical Systems (SIADS),...
-
FTIR spectra of VO2 and V2O3 nanostructures
Open Research DataThe DataSet contains the FTIR spectra of VO2 and V2O3 nanostructures obtained by the sol-gel with different reaction conditions. The information about xerogel powder synthesis is described in the Journal of Nanomaterials. The xerogel powder was annealing under argon atmosphere in the temperature range 400-1000C. The results show that the morphology...
-
The effect of different accelerators on the reclaiming efficiency of ground tire rubber
Open Research DataThe presented results concern the influence of different accelerators on the reclaiming efficiency of ground tire rubber (GTR). All the specimens were prepared using a two-roll mill and each sample was prepared in the same manner. Samples were submitted to curing analysis via Rheometer Monsanto 100S after 24 hours of aging. The attached data are related...
-
Curing characteristics of ground tire rubber modified by commercial additives
Open Research DataThe presented results show the influence of commercially available bitumen and transoctenamer rubber (TOR) on the curing behavior of GTR treated by a peroxide. Samples were prepared using a two-roll mill– all in the same manner. After 24 hours of aging at ambient conditions, they were submitted to the curing analysis via Rheometer Monsanto 100S. The...
-
Curing characteristics and Mooney viscosity of reclaimed rubbers
Open Research DataPresented data shows the difference in curing characteristics and Mooney’s viscosity between commercially available reclaimed rubbers and ground tire rubber (GTR) with specific particle size distribution cured with the same curing system and with the same manner. Samples were prepared using a two-roll mill. After 24 hours of aging at ambient conditions,...
-
Tagged images with LEGO bricks - Bricks Sloped
Open Research DataThe set contains images of LEGO bricks (from Bricks Sloped category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Tagged images with LEGO bricks - Tiles
Open Research DataThe set contains images of LEGO bricks (from Tiles category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Tagged images with LEGO bricks - Windscreens and Fuselage
Open Research DataThe set contains images of LEGO bricks (from Windscreens and Fuselage category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Tagged images with LEGO bricks - Bricks Special
Open Research DataThe set contains images of LEGO bricks (from Bricks Special category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Tagged images with LEGO bricks - Bricks
Open Research DataThe set contains images of LEGO bricks (from Bricks category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Tagged images with LEGO bricks - Technic Beams
Open Research DataThe set contains images of LEGO bricks (from Technic Beams category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Tagged images with LEGO bricks - Technic Pins
Open Research DataThe set contains images of LEGO bricks (from Technic Pins category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Tagged images with LEGO bricks - Minifig Accessories
Open Research DataThe set contains images of LEGO bricks (from Minifig Accessories category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Tagged images with LEGO bricks - Plates
Open Research DataThe set contains images of LEGO bricks (from Plates category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Tagged images with LEGO bricks - Technic Panels
Open Research DataThe set contains images of LEGO bricks (from Technic Panels category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Tagged images with LEGO bricks - Pneumatics
Open Research DataThe set contains images of LEGO bricks (from Pneumatics category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.