Filters
total: 11018
filtered: 464
-
Catalog
- Publications 6985 available results
- Journals 2466 available results
- Conferences 18 available results
- Publishing Houses 25 available results
- People 246 available results
- Inventions 10 available results
- Projects 85 available results
- Research Teams 1 available results
- Research Equipment 1 available results
- e-Learning Courses 169 available results
- Events 22 available results
- Open Research Data 990 available results
Chosen catalog filters
Search results for: URBAN DEW
-
state aid for sustainable urban development
Open Research DataThe dataset encompassed a choice of important legal acts with respect on the usage of EFRD for urban projects, a list of selected bibliography as well as a list of selected individual notifications of state aid measures being part of the Sustainable Urban Development Programme in the period 2014- 2020. As a comparison, an example of individual EC decision...
-
Energy, water detailed usage. Living lab testing for sustainable urban food-water-energy cycle. Dec. 2021
Open Research DataData set contains detailed, continuous measurements of the usage of water and electrical energy (AC power) in an experimental facility set up in a scientific laboratory (Laboratorium im. B.Niemkiewicza) at the Faculty of Mechanical Engineering and Ocean Technology of the Gdansk University of Technology. The test bed was established in co-operation...
-
Place attachment, place identity, and satisfaction with urban aesthetic.
Open Research DataThe data include individual responses on the following scales (1) place attachment, (2) place identity, and (3) satisfaction with an urban aesthetic. Each line represents responses obtained from one participant and his or her demographic characteristics. like gender, age, and education level.
-
Attitudes to tree removal on private property in rural and urban Polish municipalities.
Open Research DataThe urban-rural divide is an important factor known to affect public opinion on issues related to environmental protection and management. The present data set allows for a deeper understanding of this issue with respect to policies dealing with tree removal on private property in two municipalities located in southern Poland: Racibórz (an urban municipality)...
-
Energy, water detailed usage. Living lab testing for sustainable urban food-water-energy cycle.
Open Research DataData set contains detailed, continuous measurements of the usage of water and electrical energy (AC power) in an experimental facility set up in a scientific laboratory (Laboratorium im. B.Niemkiewicza) at the Faculty of Mechanical Engineering and Ocean Technology of the Gdansk University of Technology. The test bed was established in co-operation...
-
Energy, water detailed usage. Living lab testing for sustainable urban food-water-energy cycle. Jan. 2022
Open Research DataData set contains detailed, continuous measurements of the usage of water and electrical energy (AC power) in an experimental facility set up in a scientific laboratory (Laboratorium im. B.Niemkiewicza) at the Faculty of Mechanical Engineering and Ocean Technology of the Gdansk University of Technology. The test bed was established in co-operation...
-
Sigma profiles of DES components
Open Research DataThe Sigma profiles for DES components created by the COSMO-RS.
-
Studies on the building typology, Kartuzy case study, March 2020
Open Research DataThe data presents results of work within the studies on the building typology, Kartuzy case study, study proposal from March 2020. The goal of the process was to identify the basic types of urban structure of the area and to analyse them in terms of location, connections with the neighbourhood, basic and social functions, population density, building...
-
Studies on the building typology, Dolny Sopot district case study, March 2020
Open Research DataThe data presents results of work within the studies on the building typology, Dolny Sopot district case study, study proposal from March 2020. The goal of the process was to identify the basic types of urban structure of the area and to analyse them in terms of location, connections with the neighbourhood, basic and social functions, population density,...
-
Studies on the building typology, Gdańsk-Przymorze Małe district case study, March 2020
Open Research DataThe data presents results of work within the studies on the building typology, Gdańsk-Przymorze Małe district case study, study proposal from March 2020. The goal of the process was to identify the basic types of urban structure of the area and to analyse them in terms of location, connections with the neighbourhood, basic and social functions, population...
-
Studies on the building typology, Gdańsk-Oliwa district case study, March 2020
Open Research DataThe data presents results of work within the studies on the building typology, Gdańsk-Stara Oliwa district case study, study proposal from March 2020. The goal of the process was to identify the basic types of urban structure of the area and to analyse them in terms of location, connections with the neighbourhood, basic and social functions, population...
-
Studies on the building typology, Gdańsk-Brzeźno district case study, March 2020
Open Research DataThe data presents results of work within the studies on the building typology, Gdańsk-Brzeźno district case study, study proposal from March 2020. The goal of the process was to identify the basic types of urban structure of the area and to analyse them in terms of location, connections with the neighbourhood, basic and social functions, population...
-
Studies on the building typology, Gdańsk-Nowy Port district case study, March 2020
Open Research DataThe data presents results of work within the studies on the building typology, Gdańsk-Stary Nowy Port district case study, study proposal from March 2020. The goal of the process was to identify the basic types of urban structure of the area and to analyse them in terms of location, connections with the neighbourhood, basic and social functions, population...
-
Studies on the building typology, Gdynia-Wzgórze św. Maksymiliana district case study, March 2020
Open Research DataThe data presents results of work within the studies on the building typology, Gdynia-Wzgórze św. Maksymiliana district case study, study proposal from March 2020. The goal of the process was to identify the basic types of urban structure of the area and to analyse them in terms of location, connections with the neighbourhood, basic and social functions,...
-
Studies on the building typology, Gdańsk-Wrzeszcz district case study, Kościuszki street, March 2020
Open Research DataThe data presents results of work within the studies on the building typology, Gdańsk-Wrzeszcz district case study, Kościuszki street, study proposal from March 2020. The goal of the process was to identify the basic types of urban structure of the area and to analyse them in terms of location, connections with the neighbourhood, basic and social functions,...
-
Studies on the building typology, Gdańsk-Wrzeszcz district case study, Matejki street, Wajdeloty street, Saperów street, March 2020
Open Research DataThe data presents results of work within the studies on the building typology, Gdańsk-Wrzeszcz district case study,Matejki street, Wajdeloty street, Saperów street, study proposal from March 2020. The goal of the process was to identify the basic types of urban structure of the area and to analyse them in terms of location, connections with the neighbourhood,...
-
Processes and pathways of nutrients, selected heavy metal and arsenic removal from surface runoff from the agricultural and urban catchments in floating treatment wetlands - microcosm study nutrients results
Open Research DataA dataset containing results of nutrients (N and P) concentrations in synthetic effluents (simulating surface runoff contaminated with nutrients, metals - Cu, Cd, and Pb, and metalloid - As) treated with 4 native macrophytes: Phragmites australis, Iris pseudacorus, Typha latifolia, and Alisma plantago aquatica. Nitrogen and phosphorus (total phosphorus,...
-
DES - polarity, pH and antioxidant potential
Open Research DataThis physicochemical properties of selected deep eutectic solvents (DES) were tested. Polarity is important for extraction efficiency. The values of pH can importantly affect growing of bacteria and yeasts strains. Total phenolic content, DPPH and FRAP methods were used for determination of antioxidant potential of the extract produced with DES.
-
XRD results of melamine sponges impregnated by DES
Open Research DataThe set includes raw data from XRD analysis of pure melamine sponge and melamine sponges impregnated by:- Eucalyptol:Menthol (1:1)- Eucalyptol:Menthol (1:2)- Eucalyptol:Menthol (1:3)- Eucalyptol:Menthol (1:4)- Eucalyptol:Menthol (1:5)- Thymol:Menthol (1:1)
-
Testing of DES toxicity towards Candida subhashii
Open Research DataDataset presents results of testing toxicity of selected DES solutions in mineral salt medium towards Candida subhashii.
-
SEM results of melamine sponges impregnated by DES
Open Research DataSEM results of melamine sponges impregnated by DES (3 um magnification). The set includes raw data from SEM analysis of pure melamine sponge and melamine sponges impregnated by:- Eucalyptol:Menthol (1:1)- Eucalyptol:Menthol (1:2)- Eucalyptol:Menthol (1:3)- Eucalyptol:Menthol (1:4)- Eucalyptol:Menthol (1:5)- Thymol:Menthol (1:1)
-
Attitudes to tree removal on private properties in two Polish cities.
Open Research DataLarge cities are increasingly faced with declining urban tree cover and related problems, such as increased urban heat islands and flash floods. Reducing these phenomena increasingly has to rely on trees located on private property. However, to effectively engage private landowners on these issues, more attention must be paid to understanding their...
-
Structure of the register of immovable monuments in terms of the typological groups of large-scale monuments by voivodeship - comparison of 2016 and 2024
Open Research DataThe following dataset compares the structure of the register of immovable monuments in Poland regarding the typological groups of large-scale monuments by voivodeship for 2016 and 2024. The typological groups of large-scale monuments included:
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 100 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 90 deg, j = 45 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters -Be = 50 mT, I = 70 deg, z = 10 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 100 deg, j = 90 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters- Be = 50 mT, I = 70 deg, z = 100 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 90 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 100 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 90 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 90 deg, j = 45 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.