Filters
total: 52952
filtered: 253
-
Catalog
- Publications 25224 available results
- Journals 696 available results
- Publishing Houses 89 available results
- People 2191 available results
- Inventions 246 available results
- Projects 578 available results
- Laboratories 39 available results
- Research Teams 107 available results
- Research Equipment 27 available results
- e-Learning Courses 8463 available results
- Events 632 available results
- Offers 1 available results
- Open Research Data 14659 available results
Chosen catalog filters
Search results for: symulacja ukladow cmos i bicmos
-
Miedzyborz 2021 - video data I - pedestrian, bicycles, vehicles
Open Research DataMiedzyborz 2021 - video data - pedestrian, bicycles, vehicles
-
state aid for research, development and innovation ( R+D+I)
Open Research DataThe dataset encompasses a choice of important legal acts, a list of selected Polish bibliography, some important individual EC decisions issued on the topic of state aid for research, development, and innovation during the budgetary periods 2007-2013 and 2014-2020. Thanks to that the reader gets the possibility to acquire basic knowledge on the abovementioned...
-
Krotoszyn 2021 - video data I - pedestrian, bicycles, vehicles
Open Research DataKrotoszyn 2021 - video data - pedestrian, bicycles, vehicles
-
Gostyn 2021 - video data I - pedestrian, bicycles, vehicles
Open Research DataGostyn 2021 - video data - pedestrian, bicycles, vehicles
-
Case Study NEB Atlas / part I - 3D Models / Brunnshög, Lund
Open Research DataThe data presents the results of work on the analysis of contemporary neighbourhoods. The aim of this part of the research was to create a digital model - a simplified digital twin - for selected parts of housing estates already realised in various cities in Europe. This group presents a model for a fragment of the Brunnshög district in Lund, Sweden....
-
Case Study NEB Atlas / part I - 3D Models / King's Cross, London
Open Research DataThe data presents the results of work on the analysis of contemporary neighbourhoods. The aim of this part of the research was to create a digital model - a simplified digital twin - for selected parts of housing estates already realised in various cities in Europe. This group presents a model for a fragment of the King's Cross, London, UK. The students...
-
Source code - AI models (MLM1-5 - series I-III - QNM opt)
Open Research DataSource code - AI models (MLM1-5 - series I-III - QNM opt) for the paper "Computational Complexity and Its Influence on Concrete Compressive Strength Prediction Capabilities of Machine Learning Models for Concrete Mix Design Support" accepted for publication.
-
API 5L X65 steel - CMOD-force record in -10°C, along rolling direction
Open Research DataSteel designated as API 5L X65 is often used for oil and gas transportation pipelines. It is caused due to its high ductility, weldability and good corrosion resistance. API 5L X65 is a low alloy steel with carbon content less than 0.3% (depends on delivery condition). Once installed, a pipeline remains in place for many years. Throughout its life,...
-
API 5L X65 steel - CMOD-force record in -10°C, across rolling direction
Open Research DataSteel designated as API 5L X65 is often used for oil and gas transportation pipelines. It is caused due to its high ductility, weldability and good corrosion resistance. API 5L X65 is a low alloy steel with carbon content less than 0.3% (depends on delivery condition). Once installed, a pipeline remains in place for many years. Throughout its life,...
-
EH36 steel for shipbuilding (plate thicnkness 50mm) - CMOD - force record, a0/W = 0.6
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding (plate thicnkness 40 mm) - CMOD - force record, a0/W = 0.5
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding (plate thicnkness 40 mm) - CMOD - force record, a0/W = 0.6
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding (plate thicnkness 30 mm) - CMOD - force record, a0/W = 0.6
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding (plate thicnkness 60 mm) - CMOD - force record, a0/W = 0.6
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding (plate thicnkness 50 mm) - CMOD - force record, a0/W = 0.5
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding (plate thicnkness 30 mm) - CMOD - force record, a0/W = 0.5
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
API 5L X65 steel - fracture documentation of CMOD-force test in -10°C, across rolling direction
Open Research DataSteel designated as API 5L X65 is often used for oil and gas transportation pipelines. It is caused due to its high ductility, weldability and good corrosion resistance. API 5L X65 is a low alloy steel with carbon content less than 0.3% (depends on delivery condition). Once installed, a pipeline remains in place for many years. Throughout its life,...
-
API 5L X65 steel - fracture documentation of CMOD-force test in -10°C, along rolling direction
Open Research DataSteel designated as API 5L X65 is often used for oil and gas transportation pipelines. It is caused due to its high ductility, weldability and good corrosion resistance. API 5L X65 is a low alloy steel with carbon content less than 0.3% (depends on delivery condition). Once installed, a pipeline remains in place for many years. Throughout its life,...
-
Gdańsk University of Technology graduates’ self-assessment of selected digital competencies by gender – the year 2017, part I
Open Research DataThe dataset includes data from the survey on the Gdańsk University of Technology graduates' from the year 2017 on their self-assessment of selected digital competencies by gender. The survey was conducted in 2019, two years after the respondents obtained graduate status. The research sample included 1594 respondents. To summarize, in general, respondents...
-
Gdańsk University of Technology graduates’ self-assessment of selected digital competencies by gender – the year 2018, part I
Open Research DataThe dataset includes data from the survey on the Gdańsk University of Technology graduates' from the year 2018 on their self-assessment of selected digital competencies by gender. The survey was conducted in 2020, two years after the respondents obtained graduate status. The research sample included 1315 respondents. To summarize, in general, respondents...
-
Gdańsk University of Technology graduates’ self-assessment of selected digital competencies by gender – the year 2016, part I
Open Research DataThe dataset includes data from the survey on the Gdańsk University of Technology graduates' from the year 2016 on their self-assessment of selected digital competencies by gender. The survey was conducted in 2018, two years after the respondents obtained graduate status. The research sample included 1947 respondents. To summarize, in general, respondents...
-
Gdańsk University of Technology graduates’ self-assessment of selected digital competencies by gender – the year 2017, part I
Open Research DataThe dataset includes data from the survey on the Gdańsk University of Technology graduates' from the year 2017 on their self-assessment of selected digital competencies by gender. The survey was conducted in 2019, two years after the respondents obtained graduate status. The research sample included 1594 respondents. To summarize, in general, respondents...
-
Gdańsk University of Technology graduates’ self-assessment of selected digital competencies by gender – the year 2016, part I
Open Research DataThe dataset includes data from the survey on the Gdańsk University of Technology graduates' from the year 2016 on their self-assessment of selected digital competencies by gender. The survey was conducted in 2018, two years after the respondents obtained graduate status. The research sample included 1947 respondents. To summarize, in general, respondents...
-
Gdańsk University of Technology graduates’ self-assessment of selected digital competencies by gender – the year 2018, part I
Open Research DataThe dataset includes data from the survey on the Gdańsk University of Technology graduates' from the year 2018 on their self-assessment of selected digital competencies by gender. The survey was conducted in 2020, two years after the respondents obtained graduate status. The research sample included 1315 respondents. To summarize, in general, respondents...
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -10 m, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -100 m, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -50 m, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -10 m, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -20 m, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 100 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 90 deg, j = 45 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters -Be = 50 mT, I = 70 deg, z = 10 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 100 deg, j = 90 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters- Be = 50 mT, I = 70 deg, z = 100 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 90 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 100 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.