Filtry
wszystkich: 9
Najlepsze wyniki w katalogu: Potencjał Badawczy Pokaż wszystkie wyniki (8)
Wyniki wyszukiwania dla: lagrange equations
-
Zespół Katedry Analizy Nieliniowej i Statystyki
Potencjał BadawczyW Katedrze prowadzone są badania w trzech wiodących kierunkach. Pierwszy dotyczy zastosowania metod topologicznych i wariacyjnych w układach dynamicznych, w teorii równań różniczkowych zwyczajnych i cząstkowych oraz w teorii bifurkacji. Drugim kierunkiem badań Katedry jest zastosowanie rachunku prawdopodobieństwa i teorii aproksymacji. Ostatnią specjalizacją jest Geometria i Grafika Komputerowa, która istnieje od 2014 roku. Wybór...
-
Zespół Mechaniki i Wytrzymałości Materiałów
Potencjał BadawczyStatyka i dynamika złożonych układów mechanicznych i biomechanicznych
-
Katedra Energoelektroniki i Maszyn Elektrycznych
Potencjał Badawczy* Modelowania, projektowania i symulacji przekształtników energoelektronicznych * Sterowania i diagnostyki przekształtników energoelektronicznych * Kompatybilności elektromagnetycznej przekształtników i regulowanych napędów elektrycznych * Jakości energii elektrycznej * Modelowania, projektowania i diagnostyki maszyn elektrycznych i transformatorów * Projektowania czujników i silników piezoelektrycznych * Technik CAD i CAE dla...
Najlepsze wyniki w katalogu: Oferta Biznesowa Pokaż wszystkie wyniki (1)
Wyniki wyszukiwania dla: lagrange equations
-
Laboratorium Badawcze 2-3
Oferta BiznesowaObliczenia komputerowe wymagające dużych mocy obliczeniowych z wykorzystaniem oprogramowania typu: Matlab, Tomlab, Gams, Apros.
Pozostałe wyniki Pokaż wszystkie wyniki (16)
Wyniki wyszukiwania dla: lagrange equations
-
Anisotropic Orlicz–Sobolev spaces of vector valued functions and Lagrange equations
PublikacjaIn this paper we study some properties of anisotropic Orlicz and Orlicz–Sobolev spaces of vector valued functions for a special class of G-functions. We introduce a variational setting for a class of Lagrangian Systems. We give conditions which ensure that the principal part of variational functional is finitely defined and continuously differentiable on Orlicz–Sobolev space.
-
Mountain pass solutions to Euler-Lagrange equations with general anisotropic operator
PublikacjaUsing the Mountain Pass Theorem we show that the problem \begin{equation*} \begin{cases} \frac{d}{dt}\Lcal_v(t,u(t),\dot u(t))=\Lcal_x(t,u(t),\dot u(t))\quad \text{ for a.e. }t\in[a,b]\\ u(a)=u(b)=0 \end{cases} \end{equation*} has a solution in anisotropic Orlicz-Sobolev space. We consider Lagrangian $\Lcal=F(t,x,v)+V(t,x)+\langle f(t), x\rangle$ with growth conditions determined by anisotropic G-function and some geometric conditions...
-
Existence of Two Periodic Solutions to General Anisotropic Euler-Lagrange Equations
PublikacjaAbstract. This paper is concerned with the following Euler-Lagrange system d/dtLv(t,u(t), ̇u(t)) =Lx(t,u(t), ̇u(t)) for a.e.t∈[−T,T], u(−T) =u(T), Lv(−T,u(−T), ̇u(−T)) =Lv(T,u(T), ̇u(T)), where Lagrangian is given by L=F(t,x,v) +V(t,x) +〈f(t),x〉, growth conditions aredetermined by an anisotropic G-function and some geometric conditions at infinity.We consider two cases: with and without forcing termf. Using a general version...
-
Mountain pass type periodic solutions for Euler–Lagrange equations in anisotropic Orlicz–Sobolev space
PublikacjaUsing the Mountain Pass Theorem, we establish the existence of periodic solution for Euler–Lagrange equation. Lagrangian consists of kinetic part (an anisotropic G-function), potential part and a forcing term. We consider two situations: G satisfying at infinity and globally. We give conditions on the growth of the potential near zero for both situations.
-
Non-linearity of multibody dynamic equations with respect to Lagrange multipliers: application to railway dynamics
PublikacjaPraca koncentruje się na dynamice układów wieloczłonowych z zamkniętymi łańcuchami członów. Głównym punktem zainteresowania jest modelowanie układów z występującymi nieliniowymi zależnościami opisującymi wpływ siły mnożników Lagrange'a na dynamikę układu (nieliniowe modele siły tarcia.). Aby zbudować model dynamiki układu zawierającego zamknięte łańcuchy członów, wspomniane łańcuchy są "rozcinane" i budowana jest struktura drzewa...