ISSN:
1468-9367
eISSN:
1468-9375
Dyscypliny:
- inżynieria biomedyczna (Dziedzina nauk inżynieryjno-technicznych)
- inżynieria mechaniczna (Dziedzina nauk inżynieryjno-technicznych)
- informatyka (Dziedzina nauk ścisłych i przyrodniczych)
- matematyka (Dziedzina nauk ścisłych i przyrodniczych)
- nauki fizyczne (Dziedzina nauk ścisłych i przyrodniczych)
Punkty Ministerialne: Pomoc
Rok | Punkty | Lista |
---|---|---|
Rok 2024 | 40 | Ministerialna lista czasopism punktowanych 2024 |
Rok | Punkty | Lista |
---|---|---|
2024 | 40 | Ministerialna lista czasopism punktowanych 2024 |
2023 | 40 | Lista ministerialna czasopism punktowanych 2023 |
2022 | 40 | Lista ministerialna czasopism punktowanych (2019-2022) |
2021 | 40 | Lista ministerialna czasopism punktowanych (2019-2022) |
2020 | 40 | Lista ministerialna czasopism punktowanych (2019-2022) |
2019 | 40 | Lista ministerialna czasopism punktowanych (2019-2022) |
2018 | 20 | A |
2017 | 20 | A |
2016 | 20 | A |
2015 | 20 | A |
2014 | 15 | A |
2013 | 20 | A |
2012 | 20 | A |
2011 | 20 | A |
2010 | 27 | A |
Model czasopisma:
Hybrydowe
Punkty CiteScore:
Rok | Punkty |
---|---|
Rok 2023 | 0.9 |
Rok | Punkty |
---|---|
2023 | 0.9 |
2022 | 1 |
2021 | 0.9 |
2020 | 1.4 |
2019 | 1.3 |
2018 | 1 |
2017 | 1 |
2016 | 1.7 |
2015 | 1.3 |
2014 | 1.1 |
2013 | 1.3 |
2012 | 1.2 |
2011 | 1.2 |
Impact Factor:
Zaloguj się aby zobaczyć Współczynnik Impact Factor dla tego czasopisma
Sherpa Romeo:
Prace opublikowane w tym czasopiśmie
Filtry
wszystkich: 2
Katalog Czasopism
Rok 2014
-
Distribution of the displacement sequence of an orientation preserving circle homeomorphism
PublikacjaIn some applications not only the knowledge of the behaviour of trajectories of a map is important, but also their displacements. We describe in detail the distribution of elements of the displacement sequence along a trajectory of an orientation preserving circle homeomorphism ϕ with irrational rotation number ϱ(ϕ). The values of displacement are dense in a set which depends on the map γ (semi-)conjugating ϕ with the rotation...
Rok 2008
-
General form of fixed point indices of an iterated C^1 map andinfiniteness of minimal periods
PublikacjaDla zwartego podzbioru punktów periodycznych gładkiego odwzorowania podana zostaje formuła na indeksy iteracji. Wynik stanowi uogólnienie rezultatu Chowa, Malleta-Pareta i Yorke'a.
wyświetlono 565 razy