3-D finite-difference time-domain modelling of ground penetrating radar for identification of rebars in complex reinforced concrete structures - Publikacja - MOST Wiedzy

Wyszukiwarka

3-D finite-difference time-domain modelling of ground penetrating radar for identification of rebars in complex reinforced concrete structures

Abstrakt

This paper presents numerical and experimental investigations to identify reinforcing bars using the ground penetrating radar (GPR) method. A novel element of the paper is the inspection of different arrangements of reinforcement bars. Two particular problems, i.e. detection of few adjacent transverse bars and detection of a longitudinal bar located over or under transverse reinforcement, have been raised. An attention was also paid to the influence of few adjacent bars on the estimation of wave velocity in concrete based on the diffraction hyperbola. The GPR simulations were undertaken using the finite-difference time-domain (FDTD) method. The new approach for the numerical modelling of GPR in complex reinforced concrete structures with the use of a 3-D FDTD model was presented. Simulated scans for the 3-D model were compared with results of in situ surveys. The results of investigations showed high usefulness of the 3-D model for the GPR field propagation in structures with a complex system of the reinforcement.

Cytowania

  • 1 8

    CrossRef

  • 0

    Web of Science

  • 1 5

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 100 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
Archives of Civil and Mechanical Engineering nr 18, wydanie 4, strony 1228 - 1240,
ISSN: 1644-9665
Język:
angielski
Rok wydania:
2018
Opis bibliograficzny:
Lachowicz J., Rucka M.: 3-D finite-difference time-domain modelling of ground penetrating radar for identification of rebars in complex reinforced concrete structures// Archives of Civil and Mechanical Engineering. -Vol. 18, iss. 4 (2018), s.1228-1240
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.acme.2018.01.010
Bibliografia: test
  1. J. Hoła, K. Schabowicz, State-of-the-art non-destructive methods for diagnostic testing of building structures -anticipated development trends, Arch. Civ. Mech. Eng. 10 (2010) 5-18. doi:10.1016/S1644-9665(12)60133-2. otwiera się w nowej karcie
  2. P. Gaydecki, L. Heathcote, A methodology to extract dimensional information from steel bars using a magnetic field imaging camera (mFIC), Meas. Sci. Technol. 21 (2010) 1-10. doi:10.1088/0957-0233/21/7/075501. otwiera się w nowej karcie
  3. G.F. Pla-Rucki, M.O. Eberhard, Imaging of Reinforced Concrete: State-of-the-Art Review, J. Infrastruct. Syst. 1 (1995) 134-141. doi:10.1061/(ASCE)1076- 0342(1995)1:2(134). otwiera się w nowej karcie
  4. A.M. Alani, M. Aboutalebi, G. Kilic, Applications of ground penetrating radar (GPR) in bridge deck monitoring and assessment, J. Appl. Geophys. 97 (2013) 45-54. doi:10.1016/j.jappgeo.2013.04.009. otwiera się w nowej karcie
  5. D. Bęben, A. Mordak, W. Anigacz, Ground penetrating radar application to testing of reinforced concrete beams, Procedia Eng. 65 (2013) 242-247. doi:10.1016/j.proeng.2013.09.037. otwiera się w nowej karcie
  6. L. Xiang, H.-L. Zhou, Z. Shu, S.-H. Tan, G.-Q. Liang, J. Zhu, GPR evaluation of the Damaoshan highway tunnel: A case study, NDT E Int. 59 (2013) 68-76. doi:10.1016/j.ndteint.2013.05.004. otwiera się w nowej karcie
  7. J. Stryk, R. Matula, K. Pospisil, Possibilities of ground penetrating radar usage within acceptance tests of rigid pavements, J. Appl. Geophys. 97 (2013) 11-26. doi:10.1016/j.jappgeo.2013.06.013. otwiera się w nowej karcie
  8. J. Hugenschmidt, A. Kalogeropoulos, F. Soldovieri, G. Prisco, Processing strategies for high-resolution GPR concrete inspections, NDT E Int. 43 (2010) 334-342. doi:10.1016/j.ndteint.2010.02.002. otwiera się w nowej karcie
  9. R. González-Drigo, V. Pérez-Gracia, D. Di Capua, L.G. Pujades, GPR survey applied to Modernista buildings in Barcelona: The cultural heritage of the College of Industrial Engineering, J. Cult. Herit. 9 (2008) 196-202. doi:10.1016/j.culher.2007.10.006. otwiera się w nowej karcie
  10. D.J. Clem, T. Schumacher, J.P. Deshon, A consistent approach for processing and interpretation of data from concrete bridge members collected with a hand-held GPR device, Constr. Build. Mater. 86 (2015) 140-148. doi:10.1016/j.conbuildmat.2015.03.105. otwiera się w nowej karcie
  11. L. Zanzi, D. Arosio, Sensitivity and accuracy in rebar diameter measurements from dual-polarized GPR data, Constr. Build. Mater. 48 (2013) 1293-1301. doi:10.1016/j.conbuildmat.2013.05.009. otwiera się w nowej karcie
  12. V. Pérez-Gracia, R. González-Drigo, D. Di Capua, Horizontal resolution in a non- destructive shallow GPR survey: An experimental evaluation, NDT E Int. 41 (2008) 611-620. doi:10.1016/j.ndteint.2008.06.002. otwiera się w nowej karcie
  13. S. Yehia, N. Qaddoumi, S. Farrag, L. Hamzeh, Investigation of concrete mix variations and environmental conditions on defect detection ability using GPR, NDT E Int. 65 (2014) 35-46. doi:10.1016/j.ndteint.2014.03.006. otwiera się w nowej karcie
  14. M. Rucka, J. Lachowicz, M. Zielińska, GPR investigation of the strengthening system of a historic masonry tower, J. Appl. Geophys. 131 (2016) 94-102. doi:10.1016/j.jappgeo.2016.05.014. otwiera się w nowej karcie
  15. M. Solla, H. Lorenzo, F.I. Rial, A. Novo, Ground-penetrating radar for the structural evaluation of masonry bridges: Results and interpretational tools, Constr. Build. Mater. 29 (2012) 458-465. doi:10.1016/j.conbuildmat.2011.10.001. otwiera się w nowej karcie
  16. M. Solla, H. González-Jorge, M.X. Álvarez, P. Arias, Application of non-destructive geomatic techniques and FDTD modeling to metrical analysis of stone blocks in a masonry wall, Constr. Build. Mater. 36 (2012) 14-19. doi:10.1016/j.conbuildmat.2012.04.134. otwiera się w nowej karcie
  17. X. Xie, H. Qin, C. Yu, L. Liu, An automatic recognition algorithm for GPR images of RC structure voids, J. Appl. Geophys. 99 (2013) 125-134. doi:10.1016/j.jappgeo.2013.02.016. otwiera się w nowej karcie
  18. J. Li, Z. Zeng, L. Huang, F. Liu, GPR simulation based on complex frequency shifted recursive integration PML boundary of 3D high order FDTD, Comput. Geosci. 49 (2012) 121-130. doi:10.1016/j.cageo.2012.06.020. otwiera się w nowej karcie
  19. I. Giannakis, A. Giannopoulos, C. Warren, A Realistic FDTD Numerical Modeling Framework of Ground Penetrating Radar for Landmine Detection, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9 (2015) 1-15. doi:10.1109/JSTARS.2015.2468597. otwiera się w nowej karcie
  20. N. Diamanti, A. Giannopoulos, M.C. Forde, Numerical modelling and experimental verification of GPR to investigate ring separation in brick masonry arch bridges, NDT E Int. 41 (2008) 354-363. doi:10.1016/j.ndteint.2008.01.006. otwiera się w nowej karcie
  21. J. Lachowicz, M. Rucka, Numerical modeling of GPR field in damage detection of a reinforced concrete footbridge, Diagnostyka. 17 (2016) 3-8. otwiera się w nowej karcie
  22. J. Lachowicz, M. Rucka, Experimental and Numerical Investigations for GPR Evaluation of Reinforced Concrete Footbridge, in: 16th Int. Conf. Gr. Penetrationg Radar, Hong Kong, 2016: pp. 1-6. doi:10.1109/ICGPR.2016.7572675. otwiera się w nowej karcie
  23. L. Mertens, R. Persico, L. Matera, S. Lambot, Automated Detection of Reflection Hyperbolas in Complex GPR Images with No A Priori Knowledge on the Medium, IEEE Trans. Geosci. Remote Sens. 54 (2016) 580-596. doi:10.1109/TGRS.2015.2462727. otwiera się w nowej karcie
  24. F. Sagnard, J.-P. Tarel, Template-matching based detection of hyperbolas in ground- penetrating radargrams for buried utilities, J. Geophys. Eng. 13 (2016) 491-504. doi:10.1088/1742-2132/13/4/491. otwiera się w nowej karcie
  25. D.W. Marquardt, An Algorithm for Least-Squares Estimation of Nonlinear Parameters, J. Soc. Ind. Appl. Math. 11 (1963) 431-441. otwiera się w nowej karcie
  26. A. Giannopoulos, Modelling ground penetrating radar by GprMax, Constr. Build. Mater. 19 (2005) 755-762. doi:10.1016/j.conbuildmat.2005.06.007. otwiera się w nowej karcie
  27. C. Warren, A. Giannopoulos, I. Giannakis, gprMax: Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar, Comput. Phys. Commun. 209 (2016) 163-170. doi:10.1016/j.cpc.2016.08.020. otwiera się w nowej karcie
  28. K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Trans. Antennas Propag. 14 (1966) 302-307. doi:10.1109/TAP.1966.1138693. otwiera się w nowej karcie
  29. J.F.C. Sham, W.W.L. Lai, Development of a new algorithm for accurate estimation of GPR's wave propagation velocity by common-offset survey method, NDT E Int. 83 (2016) 104-113. doi:10.1016/j.ndteint.2016.05.002. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 288 razy

Publikacje, które mogą cię zainteresować

Meta Tagi