A Cost-Effective Method for Reconstructing City-Building 3D Models from Sparse Lidar Point Clouds - Publikacja - MOST Wiedzy

Wyszukiwarka

A Cost-Effective Method for Reconstructing City-Building 3D Models from Sparse Lidar Point Clouds

Abstrakt

The recent popularization of airborne lidar scanners has provided a steady source of point cloud datasets containing the altitudes of bare earth surface and vegetation features as well as man-made structures. In contrast to terrestrial lidar, which produces dense point clouds of small areas, airborne laser sensors usually deliver sparse datasets that cover large municipalities. The latter are very useful in constructing digital representations of cities; however, reconstructing 3D building shapes from a sparse point cloud is a time-consuming process because automatic shape reconstruction methods work best with dense point clouds and usually cannot be applied for this purpose. Moreover, existing methods dedicated to reconstructing simplified 3D buildings from sparse point clouds are optimized for detecting simple building shapes, and they exhibit problems when dealing with more complex structures such as towers, spires, and large ornamental features, which are commonly found e.g., in buildings from the renaissance era. In the above context, this paper proposes a novel method of reconstructing 3D building shapes from sparse point clouds. The proposed algorithm has been optimized to work with incomplete point cloud data in order to provide a cost-effective way of generating representative 3D city models. The algorithm has been tested on lidar point clouds representing buildings in the city of Gdansk, Poland.

Cytowania

  • 8

    CrossRef

  • 0

    Web of Science

  • 9

    Scopus

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Remote Sensing nr 14,
ISSN: 2072-4292
Język:
angielski
Rok wydania:
2022
Opis bibliograficzny:
Kulawiak M.: A Cost-Effective Method for Reconstructing City-Building 3D Models from Sparse Lidar Point Clouds// Remote Sensing -Vol. 14,iss. 5 (2022), s.1278-
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/rs14051278
Źródła finansowania:
  • COST_FREE
Weryfikacja:
Politechnika Gdańska

wyświetlono 579 razy

Publikacje, które mogą cię zainteresować

Meta Tagi