Corrosion Inhibition Mechanism and Efficiency Differentiation of Dihydroxybenzene Isomers Towards Aluminum Alloy 5754 in Alkaline Media - Publikacja - MOST Wiedzy

Wyszukiwarka

Corrosion Inhibition Mechanism and Efficiency Differentiation of Dihydroxybenzene Isomers Towards Aluminum Alloy 5754 in Alkaline Media

Abstrakt

The selection of efficient corrosion inhibitors requires detailed knowledge regarding the interaction mechanism, which depends on the type and amount of functional groups within the inhibitor molecule. The position of functional groups between different isomers is often overlooked, but is no less important, since factors like steric hinderance may significantly affect the adsorption mechanism. In this study, we have presented how different dihydroxybenzene isomers interact with aluminum alloy 5754 surface, reducing its corrosion rate in bicarbonate buffer (pH = 11). We show that the highest inhibition efficiency among tested compounds belongs to catechol at 10 mM concentration, although the differences were moderate. Utilization of novel impedance approach to adsorption isotherm determination made it possible to confirm that while resorcinol chemisorbs on aluminum surface, catechol and quinol follows the ligand exchange model of adsorption. Unlike catechol and quinol, the protection mechanism of resorcinol is bound to interaction with insoluble aluminum corrosion products layer and was only found efficient at concentration of 100 mM (98.7%). The aforementioned studies were confirmed with Scanning Electron Microscopy and X-ray Photoelectron Spectroscopy analyses. There is a significant increase in the corrosion resistance offered by catechol at 10 mM after 24 h exposure in electrolyte: from 63 to 98%, with only negligible changes in inhibitor efficiency observed for resorcinol at the same time. However, in the case of resorcinol a change in electrolyte color was observed. We have revealed that the differentiating factor is the keto-enol tautomerism. The Nuclear Magnetic Resonance (NMR) studies of resorcinol indicate the keto form in structure in presence of NaOH, while the chemical structure of catechol does not change significantly in alkaline environment.

Cytowania

  • 2 8

    CrossRef

  • 0

    Web of Science

  • 3 1

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 52 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
Materials
ISSN: 1996-1944
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Ryl J., Brodowski M., Kowalski M., Lipińska W., Niedziałkowski P., Wysocka J.: Corrosion Inhibition Mechanism and Efficiency Differentiation of Dihydroxybenzene Isomers Towards Aluminum Alloy 5754 in Alkaline Media// Materials. -, iss. 12 (2019), s.3067-
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/ma12193067
Bibliografia: test
  1. Greenwood, N.N.; Earnshaw, A. Chemistry of the Elements, 2nd ed.; Butterworth-Heinemann: Oxford, UK;
  2. Boston, MA, USA, 1997; ISBN 978-0-7506-3365-9.
  3. Sanders, R.E. Updated by Staff Aluminum and Aluminum Alloys. In Kirk-Othmer Encyclopedia of Chemical Technology; otwiera się w nowej karcie
  4. John Wiley & Sons, Inc., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; ISBN 978-0-471-23896-6. [CrossRef] otwiera się w nowej karcie
  5. Macdonald, D.D. Evaluation of Alloy Anodes for Aluminum-Air Batteries. J. Electrochem. Soc. 1988, 135, 2410. [CrossRef] otwiera się w nowej karcie
  6. Chu, D.; Savinell, R.F. Experimental data on aluminum dissolution in KOH electrolytes. Electrochim. Acta 1991, 36, 1631-1638. [CrossRef] otwiera się w nowej karcie
  7. Pyun, S.-I.; Moon, S.-M. Corrosion mechanism of pure aluminium in aqueous alkaline solution. J. Solid State Electrochem. 2000, 4, 267-272. [CrossRef] otwiera się w nowej karcie
  8. Moon, S.-M.; Pyun, S.-I. The corrosion of pure aluminium during cathodic polarization in aqueous solutions. Corros. Sci. 1997, 39, 399-408. [CrossRef] otwiera się w nowej karcie
  9. Adhikari, S.; Hebert, K.R. Factors controlling the time evolution of the corrosion potential of aluminum in alkaline solutions. Corros. Sci. 2008, 50, 1414-1421. [CrossRef] otwiera się w nowej karcie
  10. Adhikari, S.; Lee, J.; Hebert, K.R. Formation of Aluminum Hydride during Alkaline Dissolution of Aluminum. J. Electrochem. Soc. 2008, 155, C16. [CrossRef] otwiera się w nowej karcie
  11. Perrault, G.G. The Role of Hydrides in the Equilibrium of Aluminum in Aqueous Solutions. J. Electrochem. Soc. 1979, 126, 199. [CrossRef] otwiera się w nowej karcie
  12. Brown, O.R.; Whitley, J.S. Electrochemical behaviour of aluminium in aqueous caustic solutions. Electrochim. Acta 1987, 32, 545-556. [CrossRef] otwiera się w nowej karcie
  13. Li, Q.; Bjerrum, N.J. Aluminum as anode for energy storage and conversion: A review. J. Power Sour. 2002, 110, 1-10. [CrossRef] otwiera się w nowej karcie
  14. Liu, Y.; Sun, Q.; Li, W.; Adair, K.R.; Li, J.; Sun, X. A comprehensive review on recent progress in aluminum-air batteries. Gr. Energy Environ. 2017, 2, 246-277. [CrossRef] otwiera się w nowej karcie
  15. Yang, S. Design and analysis of aluminum/air battery system for electric vehicles. J. Power Sour. 2002, 112, 162-173. [CrossRef] otwiera się w nowej karcie
  16. Zhang, X.; Yang, S.H.; Knickle, H. Novel operation and control of an electric vehicle aluminum/air battery system. J. Power Sour. 2004, 128, 331-342. [CrossRef] otwiera się w nowej karcie
  17. Singh, A.; Ansari, K.; Quraishi, M.; Lgaz, H. Effect of Electron Donating Functional Groups on Corrosion Inhibition of J55 Steel in a Sweet Corrosive Environment: Experimental, Density Functional Theory, and Molecular Dynamic Simulation. Materials 2018, 12, 17. [CrossRef] [PubMed] otwiera się w nowej karcie
  18. Al-Suhybani, A.A.; Sultan, Y.H.; Hamid, W.A. Corrosion of aluminium in alkaline solutions. Mater. Werkst. 1991, 22, 301-307. [CrossRef] otwiera się w nowej karcie
  19. Ebenso, E.E.; Isabirye, D.A.; Eddy, N.O. Adsorption and Quantum Chemical Studies on the Inhibition Potentials of Some Thiosemicarbazides for the Corrosion of Mild Steel in Acidic Medium. IJMS 2010, 11, 2473-2498. [CrossRef] [PubMed] otwiera się w nowej karcie
  20. Xhanari, K.; Finšgar, M. Organic corrosion inhibitors for aluminum and its alloys in chloride and alkaline solutions: A review. Arab. J. Chem. 2016, in press. [CrossRef] otwiera się w nowej karcie
  21. Wysocka, J.; Krakowiak, S.; Ryl, J. Evaluation of citric acid corrosion inhibition efficiency and passivation kinetics for aluminium alloys in alkaline media by means of dynamic impedance monitoring. Electrochim. Acta 2017, 258, 1463-1475. [CrossRef] otwiera się w nowej karcie
  22. Wysocka, J.; Cieslik, M.; Krakowiak, S.; Ryl, J. Carboxylic acids as efficient corrosion inhibitors of aluminium alloys in alkaline media. Electrochim. Acta 2018, 289, 175-192. [CrossRef] otwiera się w nowej karcie
  23. Brito, P.S.D.; Sequeira, C.A.C. Organic Inhibitors of the Anode Self-Corrosion in Aluminum-Air Batteries. J. Fuel Cell Sci. Technol. 2013, 11, 011008. [CrossRef] otwiera się w nowej karcie
  24. Müller, B. Citric acid as corrosion inhibitor for aluminium pigment. Corros. Sci. 2004, 46, 159-167. [CrossRef] otwiera się w nowej karcie
  25. Amin, M.A.; EI-Rehim, S.S.A.; El-Sherbini, E.E.F.; Hazzazi, O.A.; Abbas, M.N. Polyacrylic acid as a corrosion inhibitor for aluminium in weakly alkaline solutions. Part I: Weight loss, polarization, impedance EFM and EDX studies. Corros. Sci. 2009, 51, 658-667. [CrossRef] otwiera się w nowej karcie
  26. Kumari, P.D.R.; Nayak, J.; Shetty, A.N. 3-Methyl-4-amino-5-mercapto-1, 2, 4-triazole as corrosion inhibitor for 6061 Al alloy in 0.5 M sodium hydroxide solution. J. Coat. Technol. Res. 2011, 8, 685-695. [CrossRef] otwiera się w nowej karcie
  27. Lashgari, M.; Malek, A.M. Fundamental studies of aluminum corrosion in acidic and basic environments: Theoretical predictions and experimental observations. Electrochim. Acta 2010, 55, 5253-5257. [CrossRef] otwiera się w nowej karcie
  28. Lashgari, M. Theoretical challenges in understanding the inhibition mechanism of aluminum corrosion in basic media in the presence of some p-phenol derivatives. Electrochim. Acta 2011, 56, 3322-3327. [CrossRef] otwiera się w nowej karcie
  29. Al-Amiery, A.; Al-Majedy, Y.; Kadhum, A.; Mohamad, A. New Coumarin Derivative as an Eco-Friendly Inhibitor of Corrosion of Mild Steel in Acid Medium. Molecules 2014, 20, 366-383. [CrossRef] [PubMed] otwiera się w nowej karcie
  30. Yang, W.; Wang, Q.; Xu, K.; Yin, Y.; Bao, H.; Li, X.; Niu, L.; Chen, S. Enhanced Corrosion Resistance of Carbon Steel in Hydrochloric Acid Solution by Eriobotrya Japonica Thunb. Leaf Extract: Electrochemical Study. Materials 2017, 10, 956. [CrossRef] otwiera się w nowej karcie
  31. Okeniyi, J.; Loto, C.; Popoola, A. Effects of Phyllanthus muellerianus Leaf-Extract on Steel-Reinforcement Corrosion in 3.5% NaCl-Immersed Concrete. Metals 2016, 6, 255. [CrossRef] otwiera się w nowej karcie
  32. Fares, M.M.; Maayta, A.K.; Al-Qudah, M.M. Pectin as promising green corrosion inhibitor of aluminum in hydrochloric acid solution. Corros. Sci. 2012, 60, 112-117. [CrossRef] otwiera się w nowej karcie
  33. Abdel-Gaber, A.M.; Abd-El-Nabey, B.A.; Sidahmed, I.M.; El-Zayady, A.M.; Saadawy, M. Inhibitive action of some plant extracts on the corrosion of steel in acidic media. Corros. Sci. 2006, 48, 2765-2779. [CrossRef] otwiera się w nowej karcie
  34. Abiola, O.K.; Otaigbe, J.O.E.; Kio, O.J. Gossipium hirsutum L. extracts as green corrosion inhibitor for aluminum in NaOH solution. Corros. Sci. 2009, 51, 1879-1881. [CrossRef] otwiera się w nowej karcie
  35. Abiola, O.K.; Oforka, N.C.; Ebenso, E.E.; Nwinuka, N.M. Eco-friendly corrosion inhibitors: The inhibitive action of Delonix Regia extract for the corrosion of aluminium in acidic media. Anti-Corros. Methods Mater. 2007, 54, 219-224. [CrossRef] otwiera się w nowej karcie
  36. Azzaoui, K.; Mejdoubi, E.; Jodeh, S.; Lamhamdi, A.; Rodriguez-Castellón, E.; Algarra, M.; Zarrouk, A.; Errich, A.; Salghi, R.; Lgaz, H. Eco friendly green inhibitor Gum Arabic (GA) for the corrosion control of mild steel in hydrochloric acid medium. Corros. Sci. 2017, 129, 70-81. [CrossRef] otwiera się w nowej karcie
  37. de Souza, F.S.; Spinelli, A. Caffeic acid as a green corrosion inhibitor for mild steel. Corros. Sci. 2009, 51, 642-649. [CrossRef] otwiera się w nowej karcie
  38. Abiola, O.K.; Otaigbe, J.O.E. The effects of Phyllanthus amarus extract on corrosion and kinetics of corrosion process of aluminum in alkaline solution. Corros. Sci. 2009, 51, 2790-2793. [CrossRef] otwiera się w nowej karcie
  39. Singh, A.; Ahamad, I.; Quraishi, M.A. Piper longum extract as green corrosion inhibitor for aluminium in NaOH solution. Arab. J. Chem. 2016, 9, S1584-S1589. [CrossRef] otwiera się w nowej karcie
  40. Ryl, J.; Wysocka, J.; Cieslik, M.; Gerengi, H.; Ossowski, T.; Krakowiak, S.; Niedzialkowski, P. Understanding the origin of high corrosion inhibition efficiency of bee products towards aluminium alloys in alkaline environments. Electrochim. Acta 2019, 304, 263-274. [CrossRef] otwiera się w nowej karcie
  41. Talati, J.D.; Modi, R.M. O-Substituted Phenols as Corrosion Inhibitors for Aluminium-Copper Alloy in Sodium Hydroxide. Br. Corros. J. 1977, 12, 180-184. [CrossRef] otwiera się w nowej karcie
  42. Lakshmi, D.; Rajendran, S.; Sathiabama, J. Inhibition of Corrosion of Aluminium in Aqueous Solution at pH11 by Resorcinol-Zn2+ System. Int. J. Nano Corr. Sci. Eng. 2016, 3, 26-42.
  43. Fouda, A.S.; Elasmy, A.A. Efficiency of some phenylthiosemicarbazide derivatives in retarding the dissolution of Al in NaOH solution. Mon. Chem. 1987, 118, 709-716. [CrossRef] otwiera się w nowej karcie
  44. Hassan, S.M.; Moussa, M.N.; El-Tagoury, M.M.; Radi, A.A. Aromatic acid derivatives as corrosion inhibitors for aluminium in acidic and alkaline solutions. Anti-Corros. Methods Mater. 1990, 37, 8-11. [CrossRef] otwiera się w nowej karcie
  45. Obi-Egbedi, N.O.; Obot, I.B.; El-Khaiary, M.I. Quantum chemical investigation and statistical analysis of the relationship between corrosion inhibition efficiency and molecular structure of xanthene and its derivatives on mild steel in sulphuric acid. J. Mol. Struct. 2011, 1002, 86-96. [CrossRef] otwiera się w nowej karcie
  46. Khaled, K.F. Electrochemical investigation and modeling of corrosion inhibition of aluminum in molar nitric acid using some sulphur-containing amines. Corros. Sci. 2010, 52, 2905-2916. [CrossRef] otwiera się w nowej karcie
  47. Ramesh Babu, B.; Holze, R. Corrosion and hydrogen permeation inhibition for mild steel in HCl by isomers of organic compounds. Br. Corros. J. 2000, 35, 204-209. [CrossRef] otwiera się w nowej karcie
  48. Talati, J.D.; Desai, M.N.; Shah, N.K. Ortho-, meta-, and para-aminophenol-N-salicylidenes as corrosion inhibitors of zinc in sulfuric acid. Anti-Corros. Meth Mater. 2005, 52, 108-117. [CrossRef] otwiera się w nowej karcie
  49. Ryl, J.; Darowicki, K.; Slepski, P. Evaluation of cavitation erosion-corrosion degradation of mild steel by means of dynamic impedance spectroscopy in galvanostatic mode. Corros. Sci. 2011, 53, 1873-1879. [CrossRef] otwiera się w nowej karcie
  50. Gerengi, H.; Darowicki, K.; Slepski, P.; Bereket, G.; Ryl, J. Investigation effect of benzotriazole on the corrosion of brass-MM55 alloy in artificial seawater by dynamic EIS. J. Solid State Electrochem. 2010, 14, 897-902. [CrossRef] otwiera się w nowej karcie
  51. Gerengi, H. The Use of Dynamic Electrochemical Impedance Spectroscopy in Corrosion Inhibitor Studies. Prot. Met. Phys. Chem. Surf. 2018, 54, 536-540. [CrossRef] otwiera się w nowej karcie
  52. Hirschorn, B.; Orazem, M.E.; Tribollet, B.; Vivier, V.; Frateur, I.; Musiani, M. Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochim. Acta 2010, 55, 6218-6227. [CrossRef] otwiera się w nowej karcie
  53. Talati, J.D.; Modi, R.M. Dihydroxy-benzenes as Corrosion Inhibitors for Aluminium-Copper Alloy in Sodium Hydroxide. Br. Corros. J. 1975, 10, 103-106. [CrossRef] otwiera się w nowej karcie
  54. Suresh, S.; Srivastava, V.C.; Mishra, I.M. Adsorption of catechol, resorcinol, hydroquinone, and their derivatives: A review. Int. J. Energy Environ. Eng. 2012, 3, 32. [CrossRef] otwiera się w nowej karcie
  55. Wysocka, J.; Krakowiak, S.; Ryl, J.; Darowicki, K. Investigation of the electrochemical behaviour of AA1050 aluminium alloy in aqueous alkaline solutions using Dynamic Electrochemical Impedance Spectroscopy. J. Electroanal. Chem. 2016, 778, 126-136. [CrossRef] otwiera się w nowej karcie
  56. Djordjevic, I.; Choudhury, N.R.; Dutta, N.K.; Kumar, S. Synthesis and characterization of novel citric acid-based polyester elastomers. Polymer 2009, 50, 1682-1691. [CrossRef] otwiera się w nowej karcie
  57. Amin, M.A.; Ahmed, E.M.; Mostafa, N.Y.; Alotibi, M.M.; Darabdhara, G.; Das, M.R.; Wysocka, J.; Ryl, J.; Abd El-Rehim, S.S. Aluminum Titania Nanoparticle Composites as Nonprecious Catalysts for Efficient Electrochemical Generation of H 2 . ACS Appl. Mater. Interfaces 2016, 8, 23655-23667. [CrossRef] [PubMed] otwiera się w nowej karcie
  58. Niedziałkowski, P.; Ossowski, T.; Zięba, P.; Cirocka, A.; Rochowski, P.; Pogorzelski, S.J.; Ryl, J.; Sobaszek, M.; Bogdanowicz, R. Poly-l-lysine-modified boron-doped diamond electrodes for the amperometric detection of nucleic acid bases. J. Electroanal. Chem. 2015, 756, 84-93. [CrossRef] Materials 2019, 12, 3067 20 of 20 otwiera się w nowej karcie
  59. McCafferty, E.; Wightman, J.P. Determination of the concentration of surface hydroxyl groups on metal oxide films by a quantitative XPS method. Surf. Interface Anal. 1998, 26, 549-564. [CrossRef] otwiera się w nowej karcie
  60. Ryl, J.; Wysocka, J.; Jarzynka, M.; Zielinski, A.; Orlikowski, J.; Darowicki, K. Effect of native air-formed oxidation on the corrosion behavior of AA 7075 aluminum alloys. Corros. Sci. 2014, 87, 150-155. [CrossRef] otwiera się w nowej karcie
  61. Wloka, J.; Bürklin, G.; Virtanen, S. Influence of second phase particles on initial electrochemical properties of AA7010-T76. Electrochim. Acta 2007, 53, 2055-2059. [CrossRef] otwiera się w nowej karcie
  62. Yasakau, K.A.; Zheludkevich, M.L.; Lamaka, S.V.; Ferreira, M.G.S. Role of intermetallic phases in localized corrosion of AA5083. Electrochim. Acta 2007, 52, 7651-7659. [CrossRef] otwiera się w nowej karcie
  63. Goswami, R.; Spanos, G.; Pao, P.S.; Holtz, R.L. Precipitation behavior of the ß phase in Al-5083. Mater. Sci. Eng. A 2010, 527, 1089-1095. [CrossRef] otwiera się w nowej karcie
  64. Novak, P.; Skare, D.; Sekusak, S. Substituent, temperature and solvent effects on keto-enol equilibrium in symmetrical pentane-1,3,5-triones. Nuclear magnetic resonance and theoretical studies. Croat. Chem. Acta 2000, 73, 1153-1170.
  65. Billman, J.H.; Sojka, S.A.; Taylor, P.R. Investigations of keto-enol tautomerism by carbon-13 nuclear magnetic resonance spectroscopy. J. Chem. Soc. Perkin Transection 2 1972, 2034-2035. [CrossRef] otwiera się w nowej karcie
  66. Gaca, K.Z.; Parkinson, J.A.; Sefcik, J. Kinetics of early stages of resorcinol-formaldehyde polymerization investigated by solution-phase nuclear magnetic resonance spectroscopy. Polymer 2017, 110, 62-73. [CrossRef] otwiera się w nowej karcie
  67. Giles, R.; Kim, I.; Chao, W.E.; Moore, J.; Jung, K.W. Dual Studies on a Hydrogen-Deuterium Exchange of Resorcinol and the Subsequent Kinetic Isotope Effect. J. Chem. Educ. 2014, 91, 1220-1223. [CrossRef] otwiera się w nowej karcie
  68. Lambert, F.; Ellenberger, M.; Merlin, L.; Cohen, Y. NMR study of catechol and some catecholamines. Org. Magn. Reson. 1975, 7, 266-273. [CrossRef] otwiera się w nowej karcie
  69. Luisier, N.; Schenk, K.; Severin, K. A four-component organogel based on orthogonal chemical interactions. Chem. Commun. 2014, 50, 10233-10236. [CrossRef] [PubMed] otwiera się w nowej karcie
  70. Kim, H.; Gao, J.; Burgess, D.J. Evaluation of solvent effects on protonation using NMR spectroscopy: Implication in salt formation. Int. J. Pharm. 2009, 377, 105-111. [CrossRef] [PubMed] otwiera się w nowej karcie
  71. Pretsch, E.; Buhlmann, P.; Badertscher, M. Structure Determination of Organic Compounds; Springer: Berlin/Heidelberg, Germany, 2009; ISBN 978-3-540-93809-5. otwiera się w nowej karcie
  72. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). otwiera się w nowej karcie
Źródła finansowania:
Weryfikacja:
Politechnika Gdańska

wyświetlono 144 razy

Publikacje, które mogą cię zainteresować

Meta Tagi